COMPUTER PROGRAMMING IN C
LECTURE NOTES

Year : 2020 -2021

SubjectCode : RPL2B001

Semester : 2nd

Class : B.Tech

Branch : CE/CSE/ ECE/ IT/IEE/IME

Instructor . Mr.santhosh alajangi, Associate Professor, CSE

PreparedBy : Mr.Santhosh alajangi, Associate Professor,cse

GANDHI INSTITUTE OF SCIENCE AND

TECHNOLOGY
KHOLLIGUDA

,RAYAGADA - 765017

UNIT-I
INTRODUCTION TO COMPUTERS

COMPUTER SYSTEMS
-A Computer is an electronic device that stores, manipulates and retrieves the data.l We

can also refer computer computes the information supplied to it and generates data.

A System is a group of several objects with a process. For Example: Educational System

involves teacher, students (objects). Teacher teaches subject to students i.e., teaching (process).
Similarly a computer system can have objects andprocess.
The following are the objects of computer System
a) User (A person who uses thecomputer)
b) Hardware
c) Software
Hardware: Hardware of a computer system can be referred as anything which we can touchand
feel. Example : Keyboard andMouse.
The hardware of a computer system can be classified as
Input Devices(I/P)
Processing Devices (CPU)
Output Devices(O/P)

KEYBOARD MONITO

ALU: It performs the Arithmetic and Logical Operations such as
+,-,*,/ (Arithmetic Operators)
&&, || (LogicalOperators)
CU: Every Operation such as storing , computing and retrieving the data should be governed by

the control unit.

MU: The Memory unit is used for storing the data.
The Memory unit is classified into two types.
Theyare 1) PrimaryMemory

2) Secondary Memory
Primary memory: The following are the types of memoruies which are treated as primary
ROM: It represents Read Only Memory that stores data and instructions even when the computer
is turned off. The Contents in the ROM can‘t be modified once if they are written . It is used to
store the B1OSinformation.
RAM: It represents Random Access Memory that stores data and instructions when the computer
is turned on. The contents in the RAM can be modified any no. of times by instructions. It is
used to store the programs underexecution.
Cache memory: It is used to store the data and instructions referred by processor.
Secondary Memory: The following are the different kinds of memories
Magnetic Storage: The Magnetic Storage devices store information that can be read, erased and
rewritten a number of times.
Example: Floppy Disks, Hard Disks, Magnetic Tapes
Optical Storage: The optical storage devices that use laser beams to read and write storeddata.
Example: CD(Compact Disk),DVD(Digital VersatileDisk)

COMPUTER SOFTWARE

Software of a computer system can be referred as anything which we can feel andsee.

Example: Windows,icons

Computer software is divided in to two broad categories: system software and application

software .System software manages the computer resources .It provides the interface between the

hardware and the users. Application software, on the other hand is directly responsible for

helping users solve their problems.

System Software
System software consists of programs that manage the hardware resources of a computer and
perform required information processing tasks. These programs are divided into three classes:

the operating system, system support, and systemdevelopment.

The operating system provides services such as a user interface, file and database access, and
interfaces to communication systems such as Internet protocols. The primary purpose of this
software is to keep the system operating in an efficient manner while allowing the users access to
the system.

System support software provides system utilities and other operating services. Examples of
system utilities are sort programs and disk format programs. Operating services consists of
programs that provide performance statistics for the operational staff and security monitors to
protect the system and data.

The last system software category, system development software, includes the language
translators that convert programs into machine language for execution ,debugging tools to ensure

that the programs are error free and computer —assisted software engineering(CASE) systems.

Application software

Application software is broken in to two classes: general-purpose software and application —
specific software. General purpose software is purchased from a software developer and can be
used for more than one application. Examples of general purpose software include word
processors, database management systems ,and computer aided design systems. They are labeled
general purpose because they can solve a variety of user computing problems.

Application —specific software can be used only for its intended purpose.

A general ledger system used by accountants and a material requirements planning system used
by a manufacturing organization are examples of application-specific software. They can be used

only for the task for which they were designed they cannot be used for other generalized tasks.

The relationship between system and application software is shown below. In this figure, each

circle represents an interface point .The inner core is hard ware. The user is represented by the
out layer. To work with the system, the typical user uses some form of application software. The
application software in turn interacts with the operating system, which is a part of the system
software layer. The system software provides the direct interaction with the hard ware. The
opening at the bottom of the figure is the path followed by the user who interacts directly with

the operating system whennecessary.

COMPUTING ENVIRONMENTS

The word _compute* is used to refer to the process of converting information to data. The

advent of several new kinds of computers created a need to have different computing
environments.
The following are the different kinds of computing environments available

1. Personal ComputingEnvironment

2. Time Sharing Environment

3. Client/ServerEnvironment

4. Distributed ComputingEnvironment
Personal Computing Environment

In 1971, Marcian E. Hoff, working for INTEL combined the basic elements of the central
processing unit into the microprocessor. If we are using a personal computer then all the
computer hardware components are tied together. This kind of computing is used to satisfy the
needs of a single user, who uses the computer for the personal tasks.

Ex: Personal Computer

Hard Drive
(Intemal)

Personal Computing Environment

Time-Sharing Environment
The concept of time sharing computing is to share the processing of the computer basing

on the criteria time. In this environment all the computing must be done by the central computer.

The complete processing is done by the central computer. The computer which ask for

processing are only dumbterminals.

>
(o
Cent AT
R :\
Shared Prinlers

o Sorage

Time-sharing Ernironment

Client/Server Environment

A Client/Server Computing involves the processing between two machines. A client
Machine is the one which requests processing. Server Machine is the one which offers the
processing. Hence the client is Capable enough to do processing. A portion of processing is

done by client and the core(important) processing is done byServer.

Clients

The Client/Server Environment

Distributed Computing

A distributed computing environment provides a seamless integration of computing
functions between different servers and clients. A client not just a requestor for processing the
information from the server. The client also has the capability to process information. All the

machines Clients/Servers share the processing task.

Clients
(browsers)

Distributed Computing

Example: Ebay on Internet

COMPUTER LANGUAGES
To write a program (tells what to do) for a computer, we must use a computer language.
Over the years computer languages have evolved from machine languages to natural languages.
The following is the summary of computer languages
1940°s Machine Languages
1950°s Symbolic Languages
1960°s High Level Languages
Machine Language
In the earliest days of computers, the only programming languages available were
machine languages. Each computer has its own machine language which is made of streams of
0‘s and 1°s. The instructions in machine language must be in streams of 0‘s and 1°s. This is also
referred as binary digits. These are so named as the machine can directly understood the
programs
Advantages:
1) High speedexecution

2) The computer can understood instructionsimmediately

3) No translation is needed.
Disadvantages:

1) Machinedependent

2) Programming is verydifficult

3) Difficult tounderstand

4) Difficult to write bug freeprograms

5) Difficult to isolate anerror

Example Additon of two numbers

Symbolic Languages (or) Assembly Language

In the early 1950‘s Admiral Grace Hopper, a mathematician and naval officer, developed
the concept of a special computer program that would convert programs into machine language.
These early programming languages simply mirrored the machine languages using symbols or
mnemonics to represent the various language instructions. These languages were known as
symbolic languages. Because a computer does not understand symbolic language it must be
translated into the machine language. A special program called an Assembler translates
symbolic code into the machine language. Hence they are called as Assemblylanguage.
Advantages:

1) Easy to understand anduse

2) Easy to modify and isolateerror

3) High efficiency

4) More control on hardware

Disadvantages:

1) Machine DependentLanguage

2) Requirestranslator

3) Difficult to learn and writeprograms

4) Slow developmenttime

5) Less efficient

Example:

PUSH2,A
PUSH3,B
ADDA,B
PRINTC

High-Level Languages

The symbolic languages greatly improved programming efficiency they still

required programmers to concentrate on the hardware that they were using working with

symbolic languages was also very tedious because each machine instruction had to be

individually coded. The desire to improve programmer efficiency and to change the focus from

the computer to the problems being solved led to the development of high-level languages.

High-level languages are portable to many different computer allowing the programmer

to concentrate on the application problem at hand rather than the intricacies of thecomputer.

C

A systems implementation Language

C++

C with object oriented enhancements

JAVA

Object oriented language for internet and general applications using basic C syntax

Advantages:

1)
2)
3)
4)
5
6)
7)
8)

Easy to write andunderstand
Easy to isolate anerror
Machine independentlanguage
Easy tomaintain

Better readability

Low Development cost

Easier todocument

Portable

Disadvantages:

1)
2)
3)
4)

Needstranslator
Requires high executiontime
Poor control onhardware

Less efficient

Example: C language

#include<stdio.h>

void main()

{

int a,b,c;
scanf("%d%d%",&a,&b);

c=a+b;
printf(*%d",c);

Difference between Machine, Assembly, High Level Languages

Feature Machine

Assembly

High Level

Form O‘sand 1°‘s

Mnemonic codes

Normal English

Machine Dependent Dependent

Dependent

Independent

Translator Not Needed

Needed(Assembler)

Needed(Compiler)

Execution Time Less

Less

High

Languages Only one

Different Manufactgurers Different Languages

Nature Difficult

Difficult

Easy

Memory Space Less

Less

More

Language Translators

These are the programs which are used for converting the programs in one language into

machine language instructions, so that they can be excuted by the computer.

1) Compiler: It is a program which is used to convert the high level language

programs into machinelanguage

2) Assembler: It is a program which is used to convert the assemblylevel

language programs into machinelanguage

3) Interpreter: It is a program, it takes one statement of a high level language

program, translates it into machine language instruction and then immediately

executes the resulting machine language instruction and soon.

Comparison between a Compiler and Interpreter

COMPILER

INTERPRETER

A Compiler is used to compile an entire

program and an executable program is

generated through the object program

An interpreter is used to translate each line of

the program code immediately as it is entered

The executable program is stored in a disk for | The executable program is generated in RAM
future use or to run it in another computer and the interpreter is required for each run of

the program

The compiled programs run faster The Interpreted programs run slower

Most of the Languages use compiler A very few languages use interpreters.

CREATING AND RUNNING PROGRAMS

The procedure for turning a program written in C into machine Language. The process is

presented in a straightforward, linear fashion but you shuld recognize that these steps are
repeated many times during development to correct errors and make improvements to thecode.
The following are the four steps in this process

1) Writing and Editing theprogram

2) Compiling theprogram

3 Linking the program with the requiredmodules

4) Executing theprogram

TEXT EDITOR

|

COMPILER

@ !
Library
R

|

RUNNER

l

OUTPUT

Phase Name of Code | Tools File Extension
TextEditor Source Code C Compilers .C

Edit,

Notepad Etc..,

Compiler Object Code C Compiler

Linker Executable C Compiler
Code
Runner Executable C Compiler
Code

Writing and Editing Programs
The software used to write programs is known as a text editor. A text editor helps
us enter, change and store character data. Once we write the program in the text editor we save it

using a filename stored with an extension of .C. This file is referred as source code file.

Compiling Programs

The code in a source file stored on the disk must be translated into machine language.
This is the job of the compiler. The Compiler is a computer program that translates the source
code written in a high-level language into the corresponding object code of the low-level
language. This translation process is called compilation. The entire high level program is
converted into the executable machine code file. The Compiler which executes C programs is
called as C Compiler. Example Turbo C, Borland C, GC etc.,

The C Compiler is actually two separate programs:

The Preprocessor

The Translator
The Preprocessor reads the source code and prepares it for the translator. While preparing the
code, it scans for special instructions known as preprocessor commands. These commands tell
the preprocessor to look for special code libraries. The result of preprocessing is called the
translationunit.

After the preprocessor has prepared the code for compilation, the translator does the
actual work of converting the program into machine language. The translator reads the
translation unit and writes the resulting object module to a file that can then be combined with
other precompiled units to form the final program. An object module is the code in the machine

language.

Linking Programs

The Linker assembles all functions, the program‘s functions and system‘s functions into

one executable program.

Executing Programs
To execute a program we use an operating system command, such as run, to load the
program into primary memory and execute it. Getting the program into memory is the function

ofanoperatingsystemprogramknownastheloader.Itlocatestheexecutableprogramand

reads it into memory. When everything is loaded the program takes control and it begin

execution.

ALGORITHM
Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be
performed with a finite amount of effort in a finite length of time. No matter what the input
values may be, an algorithm terminates after executing a finite number of instructions.
We represent an algorithm using a pseudo language that is a combination of the constructs of a
programming language together with informal English statements.
The ordered set of instructions required to solve a problem is known as an algorithm.
The characteristics of a good algorithm are:

« Precision — the steps are precisely stated(defined).

« Uniqueness — results of each step are uniquely defined and only depend on theinput

and the result of the precedingsteps.

« Finiteness — the algorithm stops after a finite number of instructions areexecuted.

« Input — the algorithm receives input.

« Output — the algorithm producesoutput.

« Generality — the algorithm applies to a set ofinputs.
Example
Q. Write a algorithem to find out number is odd or even?
Ans.

step 1 : start
step 2 : inputnumber
step 3 : rem=number mod 2
step 4 : if rem=0then
print "number even"
else
print “number odd"
endif
step 5 :stop

FLOWCHART

Flowchart is a diagrammatic representation of an algorithm. Flowchart is very helpful in writing

program and explaining program to others.

Symbols Used In Flowchart

Different symbols are used for different states in flowchart, For example: Input/Output and

decision making has different symbols. The table below describes all the symbols that are used in

making flowchart

Symbol Purpose Description

Used to indicate the flow of logic by connecting
symbols.

Terminal(Stop/Start) Used to represent start and end of flowchart.

Input/Output Used for input and output operation.

.) Used for airthmetic operations and data-
rocessing])
manipulations.

o Used to represent the operation in which there are
Desicion)
two alternatives, true and false.

On-page Connector Used to join different flowline

Off-page Connector Used to connect flowchart portion on different page.

Predefined Used to represent a group of statements performing

Process/Function one processing task.

Examples of flowcharts in programming

Draw a flowchart to add two numbers entered by user.

Start)

v
Declare variables numl, num2 and sum
Y
Read numl and
num2

\i

sum«—a+b

A4
Display sum

|
*

. Stop |

Draw flowchart to find the largest among three different numbers entered by user.

. Start |
]
B

Declare variables a,b and ¢

v

Read a,b and ¢

-

?
."

R False
? L S False .
is b>c? —Fa is asc? Jrue

“"Print C P /
/ / / Print b/ /Printa |

J

[Stop |
INTRODUCTION TO C LANGUAGE
C is a general-purpose high level language that was originally developed by Dennis Ritchie for
the Unix operating system. It was first implemented on the Digital Eqquipment Corporation
PDP-11 computer in 1972.

The Unix operating system and virtually all Unix applications are written in the C language. C
has now become a widely used professional language for various reasons.
Easy tolearn
Structuredlanguage
It produces efficientprograms.
It can handle low-levelactivities.
It can be compiled on a variety ofcomputers.
Facts about C
C was invented to write an operating system calledUNIX.
C is a successor of B language which was introduced around1970
The language was formalized in 1988 by the American National Standard Institue
(ANSI).
By 1973 UNIX OS almost totally written inC.
Today C is the most widely used System ProgrammingLanguage.
Most of the state of the art software have been implemented usingC
Why to use C?
C was initially used for system development work, in particular the programs that make-up the

operating system. C was adoped as a system development language because it produces code that

runs nearly as fast as code written in assembly language. Some examples of the use of C might
be:

OperatingSystems
LanguageCompilers
Assemblers
Text Editors
PrintSpoolers
NetworkDrivers
ModernPrograms
DataBases
Languagelnterpreters
Utilities

C ProgramFile

All the C programs are writen into text files with extension ".c" for example hello.c. You can use

"vi" editor to write your C program into a file.

HISTORY TO C LANGUAGE

C is a general-purpose language which has been closely associated with the UNIXoperating

system for which it was developed - since the system and most of the programs that run it are

written in C.

Many of the important ideas of C stem from the language BCPL., developed by Martin Richards.
The influence of BCPL on C proceeded indirectly through the language B, which was written by
Ken Thompson in 1970 at Bell Labs, for the first UNIX system on a DECPDP-

7. BCPL and B are "type less" languages whereas C provides a variety of datatypes.

In 1972 Dennis Ritchieat Bell Labs writes C and in 1978 the publication of The C

ProgrammingLanguageby Kernighan & Ritchie caused a revolution in the computing world.

In 1983, the American National Standards Institute (ANSI) established a committee to provide a
modern, comprehensive definition of C. The resulting definition, the ANSI standard, or "ANSI

C", was completed late 1988.

BASIC STRUCTURE OF C PROGRAMMING

Documentation section

Link section

Definition section

Global declaration section

main () Function section

{

Declaration part

Executable part

}

Subprogram section

Function 1

Function 2

(User defined functions)

Function n

http://cwis/AS/CC/GL/ccglu.html#5
http://www.le.ac.uk/cc/glossary/ccglb.html#8
http://www.digital.com/

Documentation section: The documentation section consists of a set of comment lines
giving the name of the program, the author and other details, which the programmer
would like to uselater.

Link section: The link section provides instructions to the compiler to link functions

from the system library such as using the #includedirective.

Definition section: The definition section defines all symbolic constants such using

the #definedirective.

Global declaration section: There are some variables that are used in more than one
function. Such variables are called global variables and are declared in the global
declaration section that is outside of all the functions. This section also declares all

the user-definedfunctions.

main () function section: Every C program must have one main function section. This
section contains two parts; declaration part and executablepart
1. Declaration part: The declaration part declares all the variablesused in the
executablepart.
Executable part: There is at least one statement in the executable part. These two
parts must appear between the opening and closing braces. The

programexecutionbegins at the opening brace and ends at the closing brace. The

closing brace of the main function is the logical end of the program. All

statements in the declaration and executable part end with asemicolon.

Subprogram section: If the program is a multi-function programthen the subprogram

section contains all theuser-defined functionsthat are called in the main () function. User-

defined functions are generally placed immediately after the main () function, although

they may appear in anyorder.

PROCESS OF COMPILING AND RUNNING C PROGRAM
We will briefly highlight key features of the C Compilation model here.

http://www.onlineclassnotes.com/2015/04/what-is-include-directive.html
http://www.onlineclassnotes.com/2015/04/what-is-define-directive.html
http://www.onlineclassnotes.com/2015/04/what-is-user-defined-functions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html
http://www.onlineclassnotes.com/2015/04/what-is-multi-function-program.html
http://www.onlineclassnotes.com/2015/04/what-are-necessities-or-advantages-of.html

‘ Source Code

Prprmocessor

!

Compiler

+ Azzernbly Code

Aszembler

¢ Obje

Linlk: Editor

Libraries
| -

¢ Executable Code

The C Compilation Model
The Preprocessor
The Preprocessor accepts source code as input and is responsible for
. removingcomments
. Interpreting special preprocessor directives denoted by #.
Forexample
. #include -- includes contents of a named file. Files usually called header files.e.g
o #include <math.h> -- standard library mathsfile.
o #include <stdio.h> -- standard library 1/Ofile
#define -- defines a symbolic name or constant. Macrosubstitution.
o #define MAX_ARRAY _SIZE100
C Compiler
The C compiler translates source to assembly code. The source code is received from the
preprocessor.
Assembler
The assembler creates object code. On a UNIX system you may see files with a .o suffix
(.OBJ on MSDOS) to indicate object code files.
Link Editor
If a source file references library functions or functions defined in other source files the link

editor combines these functions (with main()) to create an executable file.

20

C TOKENS
C tokens are the basic buildings blocks in C language which are constructed together to write a C

program.

Each and every smallest individual unit in a C program is known as C tokens.

C tokens are of six types. They are
Keywords (eg: int,while),
Identifiers (eg: main,total),
Constants (eg: 10,20),
Strings (eg:
—totall,-hellol),Special symbols (eg: (),

O,

Operators (eg: +,/,-%)
C KEYWORDS
C keywords are the words that convey a special meaning to the ¢ compiler. The keywords
cannot be used as variable names.

The list of C keywords is given below:

auto break char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void

volatile while

C IDENTIFIERS

Identifiers are used as the general terminology for the names of variables, functions and arrays.
These are user defined names consisting of arbitrarily long sequence of letters and digits with
either a letter or the underscore() as a first character.

There are certain rules that should be followed while naming c identifiers:

They must begin with a letter or underscore ().

They must consist of only letters, digits, or underscore. No other special character is allowed.
It should not be a keyword.

It must not contain whitespace.

It should be up to 31 characters long as only first 31 characters aresignificant.

Some examples of cidentifiers:

Name Remark

A9 Valid

Temp.var Invalid as it contains special character other than the underscore

void Invalid as it is a keyword

C CONSTANTS
A C constant refers to the data items that do not change their value during the program
execution. Several types of C constants that are allowed in C are:

Integer Constants

Integer constants are whole numbers without any fractional part. It must have at least one digit
and may contain either + or — sign. A number with no sign is assumed to be positive.
There are three types of integer constants:

Decimal Integer Constants

Integer constants consisting of a set of digits, 0 through 9, preceded by an optional — or + sign.

Example of valid decimal integer constants

341, -341, 0,8972

Octal Integer Constants

Integer constants consisting of sequence of digits from the set 0 through 7 starting with 0 is said

to be octal integer constants.

Example of valid octal integer constants
010, 0424, 0,0540
Hexadecimal Integer Constants
Hexadecimal integer constants are integer constants having sequence of digits preceded by Ox or
0X. They may also include alphabets from A to F representing numbers 10 to 15.
Example of valid hexadecimal integer constants
0xD, 0X8d, 0X, 0xbD
It should be noted that, octal and hexadecimal integer constants are rarely used in programming.
Real Constants
The numbers having fractional parts are called real or floating point constants. These may be
represented in one of the two forms called fractional form or the exponent form and may also
have either + or — sign preceding it.
Example of valid real constants in fractional form or decimal notation
0.05, -0.905, 562.05, 0.015
Representing a real constant in exponent form
The general format in which a real number may be represented in exponential or scientific form
IS
mantissa e exponent

The mantissa must be either an integer or a real number expressed in decimal notation.

The letter e separating the mantissa and the exponent can also be written in uppercase i.e. E

And, the exponent must be an integer.

Examples of valid real constants in exponent form are:

252E85, 0.15E-10,-3e+8

Character Constants

A character constant contains one single character enclosed within single quotes.
Examples of valid character constants

a‘, 7 5

=) =

It should be noted that character constants have numerical values known as ASCII values, for
example, the value of _A* is 65 which is its ASCII value.

Escape Characters/ Escape Sequences

C allows us to have certain non graphic characters in character constants. Non graphic characters
are those characters that cannot be typed directly from keyboard, for example, tabs, carriage
return, etc.

These non graphic characters can be represented by using escape sequences represented by a
backslash() followed by one or more characters.

NOTE: An escape sequence consumes only one byte of space as it represents a single character.

Escape Sequence Description
Audible alert(bell)

Backspace

Form feed

New line

Carriage return

Horizontal tab
Vertical tab
Backslash

Double guotation mark

Single quotation mark

Question mark
Null

STRING CONSTANTS

String constants are sequence of characters enclosed within double quotes. For example,
-hellol

-abcl

-hello911l

Everystingconstantisautomaticallyterminatedwithaspecialcharacter,,“calledthenull

character which represents the end of thestring.
Forexample, -hellolwill represent —hellolin thememory.

Thus, the size of the string is the total number of characters plus one for the null character.

Special Symbols
The following special symbols are used in C having some special meaning and thus, cannot be
used for some other purpose.

0O, *...=#
Braces{}: These opening and ending curly braces marks the start and end of a block of code
containing more than one executable statement.
Parentheses(): These special symbols are used to indicate function calls and function

parameters.

Brackets[]: Opening and closing brackets are used as array element reference. These indicate

single and multidimensional subscripts.

VARIABLES

A variable is nothing but a name given to a storage area that our programs can manipulate. Each
variable in C has a specific type, which determines the size and layout of the variable's memory;
the range of values that can be stored within that memory; and the set of operations that can be
applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must
begin with either a letter or an underscore. Upper and lowercase letters are distinct because C is
case-sensitive. Based on the basic types explained in the previous chapter, there will be the
following basic variable types —

Type Description

char Typically a single octet(one byte). This is an integer type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

C programming language also allows defining various other types of variables like
Enumeration, Pointer, Array, Structure, Union,etc.

Variable Definition in C

A variable definition tells the compiler where and how much storage to create for the variable.
A variable definition specifies a data type and contains a list of one or more variables of that
type as follows—

type variable_list;

Here, type must be a valid C data type including char, w_char, int, float, double, bool, or any
user-defined object; and variable_list may consist of one or more identifier names separated by

commas. Some valid declarations are shown here —

int 1i,j,k;
char c, ch;
float f, salary;
double d;

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the compiler to

create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows—

type variable_name = value;

Some examples are —

externintd =3, f=5; // declaration of d and f.

intd =3, f=5; /[definition and initializing d and f.
byte z=22; /I definition and initializesz.

char x= "X, /I the variable x has the value'x'.

For definition without an initializer: variables with static storage duration are implicitly
initialized with NULL (all bytes have the value 0); the initial value of all other variables are
undefined.

Variable Declaration in C

A variable declaration provides assurance to the compiler that there exists a variable with the
given type and name so that the compiler can proceed for further compilation without requiring
the complete detail about the variable. A variable definition has its meaning at the time of
compilation only; the compiler needs actual variable definition at the time of linking the
program. A variable declaration is useful when multiple files are used.

OPERATORS AND EXPRESSIONS
C language offers many types of operators. They are,
1. Arithmeticoperators
Assignmentoperators
Relationaloperators
Logicaloperators
Bit wiseoperators
Conditional operators (ternaryoperators)
Increment/decrementoperators

Specialoperators

Types of Operators Description

These are used to perform mathematical calculations
like addition, subtraction, multiplication, division
Arithmetic_operators andmodulus

These are used to assign the values for the variables
Assignment_operators in C programs.

These operators are used to compare the value of two
Relational operators variables.

Logical operators

These operators are used to perform logical

27

http://fresh2refresh.com/c/c-operators-expressions/c-arithmetic-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-assignment-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-relational-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-logical-operators/

operations on the given two variables.

These operators are used to perform bit operations on
Bit wise operators given two variables.

Conditional Conditional operators return one value if condition is
(ternary)operators true and returns another value is condition is false.

Increment/decrement These operators are used to either increase or
operators decrease the value of the variable by one.

Special operators &, *, sizeof() and ternary operators.

ARITHMETIC OPERATORS IN C
C Arithmetic operators are used to perform mathematical calculations like addition,
subtraction, multiplication, division and modulus in C programs.

Arithmetic
Operators Operation

Addition

Subtraction

multiplication

Division A/B

% Modulus A%B

EXAMPLE PROGRAM FOR C ARITHMETIC OPERATORS
Inthisexampleprogram,twovalues—40land—20lareusedtoperformarithmeticoperations
suchasaddition,subtraction,multiplication,division,modulusandoutputisdisplayedforeach
operation.

http://fresh2refresh.com/c/c-operators-expressions/c-bit-wise-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-increment-decrement-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-increment-decrement-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-increment-decrement-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-special-operators/

#include <stdio.h>

int main()

{

int a=40,b=20, add,sub,mul,div,mod,;

add =a+b;

sub = a-b;

mul = a*Db;

div = a/b;

mod = a%b;

printf("Addition of a, b is : %d\n", add);
printf(""Subtraction of a, b is : %d\n", sub);
printf(""Multiplication of a, b is : %d\n", mul);
printf("Division of a, b is : %d\n", div);
printf("Modulus of a, b is : %d\n", mod);
}

OUTPUT:

Addition of a, b is : 60
Subtraction of a, b is : 20
Multiplication of a, b is : 800
Divisionof a, bis: 2
Modulus of a, b is: 0

ASSIGNMENT OPERATORS IN C
In C programs, values for the variables are assigned using assignment operators.

For example, if the value —10I is to be assigned for the variable —suml, it can be assignedas
-sum= 10;!

Other assignment operators in C language are given below.

29

Operators Example Explanation

Simple
assignment 10 is assigned
operator to variable sum

This is same as
sum =sum + 10

This is same as
sum =sum — 10

This is same as
sum =sum * 10

This is same as
sum /=10 sum =sum/ 10

This is same as
sum = sum %
10

This is same as
sum =sum &
sum&=10 10

Compound
assignment sum "= This is same as
operators = 10 sum =sum ” 10

EXAMPLE PROGRAM FOR C ASSIGNMENT OPERATORS:

In this program, values from 0 — 9 are summed up and total —45| is displayed as output.
Assignment operatorssuch as-=land —+=lare used in thisprogram to assign the values and to sum
up the values.

include <stdio.h>
int main()
{
int Total=0,i;
for(i=0;i<10;i++)
{
Total+=i; // This is same as Total = Toatal+i
}
printf("Total = %d", Total);
}

OUTPUT:

Total =45

RELATIONAL OPERATORSINC

Relational operators are used to find the relation between two variables. i.e. to compare the
values of two variables in a Cprogram.

S.no Operators Example Description

X is greater than
y

X is less than y

X is greater than
orequal toy

X is less than or
equal toy

X isequal toy

X is not equal to
Xl=y y

EXAMPLE PROGRAM FOR RELATIONAL OPERATORS IN C

In this program, relational operator (==) is used to compare 2 values whether they are equal
are not.
If both values are equal, output is displayed as I values are equall. Else, output is displayed as

—uvalues are not equall.
Note: double equal sign (==) should be used to compare 2 values. We should not single
equal sign(=).

#include<stdio.h>

int main()

{

int m=40,n=20;
if (m==n)

{

printf("m and n are equal™);

printf("m and n are not equal™);

¥
¥

OUTPUT:

m and n are not equal

LOGICAL OPERATORS INC

These operators are used to perform logical operations on the given expressions.

There are 3 logical operators in C language. They are, logical AND (&&), logical OR (||) and
logical NOT (1).

S.no Operators Example Description

It returns true
when both
logical conditions
AND (x>5)&&(y<5) aretrue

It returns true
when at-least
one of the
logical condition is
OR (x>=10)||(y>=10) true

It reverses the
state of the
operand
-((x>5)&&
(y<5)l

If-((x>5)
&& (y<5))l
is true,
logical NOT
logical operator
NOT I((x>5)&&(y<5)) makes itfalse

EXAMPLE PROGRAM FOR LOGICAL OPERATORS IN C:
#include <stdio.h>

int main()

{

int m=40,n=20;

int 0=20,p=30;

if (m>n && m 1=0)

{

printf("&& Operator : Both conditions are true\n");
}

if (o>p || p!=20)

{

printf(*'|| Operator : Only one condition is true\n");
}

if ({(m>n && m 1=0))

{

printf("'! Operator : Both conditions are true\n");

printf("'! Operator : Both conditions are true. " \

"But, status is inverted as false\n");

¥
¥

OUTPUT:

&& Operator : Both conditions are true
|| Operator : Only one condition is true
I Operator : Both conditions are true. But, status is inverted as false

In this program, operators (&&, || and !) are used to perform logical operations on the given
expressions.

&& operator — -if clauselbecomes true only when both conditions (m>n and m! =0) is true.
Else, it becomes false.

||Operator — -if clauselbecomes true when any one of the condition (o>p || p!=20) istrue. It
becomes false when none of the condition is true.

I Operator — It is used to reverses the state of the operand.

If the conditions (m>n && m!=0) is true, true (1) is returned. This value is inverted by —!
operator.

So, -! (m>n and m!=0)Ireturns false(0).

BIT WISE OPERATORS IN C

These operators are used to perform bit operations. Decimal values are converted into binary
values which are the sequence of bits and bit wise operators work on these bits.

Bit wise operators in C language are & (bitwise AND), | (bitwise OR), ~ (bitwise OR), * (XOR),
<< (left shift) and >> (right shift).

TRUTH TABLE FOR BIT WISE OPERATION BIT WISE OPERATORS

X X
A

y Operator_symbol Operator_name

& Bitwise_ AND

Bitwise OR

Bitwise NOT

XOR

Left Shift

Right Shift

Consider x=40 and y=80. Binary form of these values are givenbelow.
x =00101000
y=01010000

All bit wise operations for x and y are given below.

x&y = 00000000 (binary) = 0 (decimal)

x|y = 01111000 (binary) = 120 (decimal)
~x=111111111111111212112112121212112112112112112112112112112111010111
.. ..= -41 (decimal)

x"y = 01111000 (binary) = 120 (decimal)

X <<'1 =01010000 (binary) = 80(decimal)

x >>1 =00010100 (binary) = 20(decimal)

Note:

Bit wise NOT: Value of 40 in binary
is0010100000000000. So, all 0°s are
converted into 1°s in bit wise NOT operation.

Bit wiseleft shift andright shift : In left shift operation -x << 1 -, 1 meansthat the bitswillbe left
shifted by one place. If we use it as -x << 2 -, then, it meansthat the bitswillbe left shifted by 2
places.

EXAMPLE PROGRAM FOR BIT WISE OPERATORS IN C
In this example program, bit wise operations are performed as shown above and output is

displayed in decimal format.
#include <stdio.h>

int main()

{

int m = 40,n = 80,AND_opr,OR_opr,XOR_opr,NOT _opr;
AND_opr = (m&n);

OR_opr = (m|n);

NOT _opr = (~m);

XOR_opr = (m”n);

printf("AND_opr value = %d\n",AND_opr);
printf("OR_opr value = %d\n",0OR_opr);

printf("NOT _opr value = %d\n",NOT _opr);

printf("XOR_opr value = %d\n",XOR_opr);
printf("left_shift value = %d\n", m << 1);
printf("right_shift value = %d\n", m >> 1);

}

OUTPUT:

AND_opr value =0
OR_opr value = 120
NOT _opr value = -41
XOR_opr value =120
left_shift value = 80
right_shift value = 20

CONDITIONAL OR TERNARY OPERATORS IN C

Conditional operators return one value if condition is true and returns another value is condition
is false.

This operator is also called as ternary operator.

Syntax (Condition? true_value:false_value);

Example : (A>1007?0:1);

In above example, if A is greater than 100, 0 is returned else 1 is returned. This is equal to if else
conditional statements.

EXAMPLE PROGRAM FOR CONDITIONAL/TERNARY OPERATORS IN C
#include <stdio.h>

int main()

{

int x=1, y;
y=(x==1?2:0);
printf("x value is %d\n", X);

printf("y value is %d", y);

ky

OUTPUT:

x value is 1
y value is 2

C — Increment/decrement Operators
PREVNEXT

Increment operators are used to increase the value of the variable by one and decrement
operators are used to decrease the value of the variable by one in Cprograms.

Syntax:

Increment operator: ++var_name ;(or) var_name++;

Decrement operator: — -var_name; (or) var_name — -;

Example:
Increment operator : ++i; i ++;
Decrement operator : ——i;i——;

EXAMPLE PROGRAM FOR INCREMENT OPERATORS IN C

In this program, value of -ilis incremented one by one from 1 up to 9 using -i++loperator and
output is displayed as —1 23456 7 8§ 9l.
/[Example for increment operators

#include <stdio.h>
int main()
{
inti=1;
while(i<10)
{
printf("%d ",i);

i++;

http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/

OUTPUT:
L123456789

EXAMPLE PROGRAM FOR DECREMENT OPERATORS IN C

In this program, value of -llis decremented one by one from 20 up to 11 using -i—loperator
andoutput is displayed as —20 19 18 17 16 15 14 13 12 111.

/[Example for decrement operators
#include <stdio.h>
int main()
{

int i=20;

while(i>10)

{

printf("%d ",i);

by

OUTPUT:
20191817161514131211

DIFFERENCE BETWEEN PRE/POST INCREMENT & DECREMENT OPERATORS
INC

Below table will explain the difference between pre/post increment and decrement operators in
C.

S.no Operator type Operator Description

Pre increment .
Value of i is

39

incremented before
assigning it to variable
i.

Value of i is
incremented after
assigning it to variable
Post-increment I

Value of i is
decremented before
assigning it to variable
Pre decrement i

Value of i is
decremented after
assigning it to variable
Post_decrement i

EXAMPLE PROGRAM FOR PRE — INCREMENT OPERATORS IN C
/[Example for increment operators

#include <stdio.h>
int main()

{
int i=0;

while(++i <5)
{

printf("%d " i);
}

return O;

OUTPUT:
1234

Step 1 : In above program, value of —il is incremented from 0 to 1 using pre-increment
operator.

Step2:Thisincrementedvalue—1liscomparedwith5inwhileexpression. Step 3
: Then, thisincremented value -1lis assigned to thevariable-il.

Above 3 steps are continued until while expression becomes false and output is displayed as
-12 34l

EXAMPLE PROGRAM FOR POST — INCREMENT OPERATORS IN C
#include <stdio.h>

int main()
{
int i=0;
while(i++<5)
{
printf("%d "i);
¥
return O;
¥

OUTPUT:
12345

Step 1 : In this program, value of i —O0l is compared with 5 in while expression.
Step 2 : Then, value of-ilis incrementedfrom 0 to 1 usingpost-incrementoperator.Step 3 :
Then, thisincremented value -1lis assigned to thevariable-il.

Above 3 steps are continued until while expression becomes false and output is displayed as
12345l

EXAMPLE PROGRAM FOR PRE — DECREMENT OPERATORS IN C
#include <stdio.h>

int main()

{
int i=10;
while(--i >5)
{

printf("%d ",i);
h
return O;
}

OUTPUT:
9876

Step 1 : In above program, value of —il is decremented from 10 to 9 using pre-decrement
operator.

Step2: Thisdecrementedvalue—9liscomparedwith5inwhileexpression. Step 3
: Then, thisdecremented value -9lis assigned to thevariable-il.

Above 3 steps are continued until while expression becomes false and output is displayed as
-987 6l

EXAMPLE PROGRAM FOR POST — DECREMENT OPERATORS IN C:
#include <stdio.h>

int main()

{
int i=10;
while(i-->5)
{

printf("%d ",i);

}

return O;

ky

OUTPUT:
98765

Step 1 : In this program, value of i —10l is compared with 5 in while expression.

Step 2 : Then, value of-ilis decremented from 10 to9 usingpost-decrement operator.Step 3 :
Then, thisdecremented value -9lis assigned to thevariable-il.

Above 3 steps are continued until while expression becomes false and output is displayed as
-98765l

SPECIAL OPERATORS IN C:
Below are some of special operators that C language offers.

S.no | Operators Description

This is used to get the address
of the variable.

Example : &a will give address
of a.

This is used as pointer to a
variable.

Example :*a where, *is
pointer to the variablea.

This gives the size of the
variable.

Example : size of (char) will
Sizeof () give us 1.

EXAMPLE PROGRAM FOR & AND * OPERATORS IN C

Inthisprogram,-&Isymbolisusedtogettheaddressofthevariableand-*Isymbolisused to get the
value of the variable that the pointer is pointing to. Please refer C —pointer topic to know
more aboutpointers.

#include <stdio.h>

int main()

{

int *ptr, q;

q = 50;

/* address of q is assigned to ptr */

ptr = &q;

[* display q's value using ptr variable */
printf("%d", *ptr);

return O;

}

OUTPUT:

50

EXAMPLE PROGRAM FOR SIZEOF() OPERATOR IN C

sizeof() operator is used to find the memory space allocated for each C data types.
#include <stdio.h>

#include <limits.h>
int main()

{

http://fresh2refresh.com/c/c-pointer/
http://fresh2refresh.com/c/c-pointer/

float c;

doubled;

printf("Storage size for int data type:%d \n" sizeof(a));
printf("Storage size for char data type:%d \n",sizeof(b));
printf("Storage size for float data type:%d \n",sizeof(c));
printf("Storage size for double datatype:%d\n",sizeof(d));

returnO;

ky

OUTPUT:

Storage size for int data type:4
Storage size for char data type:1
Storage size for float data type:4
Storage size for double data type:8

EXPRESSIONS

Arithmetic expression in C is a combination of variables, constants and operators written in a

proper syntax. C can easily handle any complex mathematical expressions but these
mathematical expressions have to be written in a proper syntax. Some examples of mathematical
expressions written in proper syntax of C are

Note: C does not have any operator for exponentiation.

C OPERATOR PRECEDENCE AND ASSOCIATIVITY

C operators in order of precedence (highest to lowest). Their associativity indicates in what order

operators of equal precedence in an expression are applied.

Operator Description Associativity

@) Parentheses (function call) (see Note 1) left-to-right
1 Brackets (array subscript)

. Member selection via object name

> Member selection via pointer
++ - Postfix increment/decrement (see Note 2)

45

Prefix increment/decrement

Unary plus/minus

Logical negation/bitwise complement

Cast (convert value to temporary value of type)
Dereference

Address (of operand)

Determine size in bytes on this implementation

right-to-left

Multiplication/division/modulus

left-to-right

Addition/subtraction

left-to-right

Bitwise shift left, Bitwise shift right

left-to-right

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

Relational is equal to/is not equal to

left-to-right

Bitwise AND

left-to-right

Bitwise exclusive OR

left-to-right

Bitwise inclusive OR

left-to-right

Logical AND

left-to-right

Logical OR

left-to-right

Ternary conditional

right-to-left

Assignment

Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment

Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

Comma (separate expressions)

left-to-right

Parentheses are also used to group sub-expressions to force a different
precedence; such parenthetical expressions can be nested and are

evaluated from inner to outer.

Postfix increment/decrement have high precedence, but the actual
increment or decrement of the operand is delayed (to be accomplished
sometime before the statement completes execution). So in the

statement y = X * z++; the current value of z is used to evaluate the

expression (i.e., z++ evaluates to z) and z only incremented after all else

is done.

EVALUATION OF EXPRESSION
At first, the expressions within parenthesis are evaluated. If no parenthesis is present, then the
arithmetic expression is evaluated from left to right. There are two priority levels of operators in
C.
High priority: * /%
Low priority: + -
The evaluation procedure of an arithmetic expression includes two left to right passes through
the entire expression. In the first pass, the high priority operators are applied as they are
encountered and in the second pass, low priority operations are applied as they are encountered.
Suppose, we have an arithmetic expression as:
Xx=9-12/3+3*2-1
This expression is evaluated in two left to right passes as:
First Pass
Stepl: x=9-4+3*2-1
Step2:x=9-4+6-1
Second Pass
Stepl:x=5+6-1
Step2:x=11-1
Step 3: x=10
But when parenthesis is used in the same expression, the order of evaluation gets changed.
For example,
Xx=9-12/(3+3)*(2-1)

When parentheses are present then the expression inside the parenthesis are evaluated first from

left to right. The expression is now evaluated in three passes as:
First Pass

Stepl:x=9-12/6*(2-1)

Step2:x=9-12/6*1

Second Pass

Stepl:x=9-2*1

Step2:x=9-2

Third Pass

Step 3:x=7

There may even arise a case where nested parentheses are present (i.e. parenthesis inside
parenthesis). In such case, the expression inside the innermost set of parentheses isevaluated
first and then the outer parentheses are evaluated.

For example, we have an expression as:

Xx=9-(12/3)+3*2)-1

The expression is now evaluated as:

First Pass:

Stepl:x=9-(4+3*2)-1

Step2:x=9-(4+6)-1

Step3:x=9-10-1

Second Pass

Stepl:x=-1-1

Step 2: x =-2

Note: The number of evaluation steps is equal to the number of operators in the arithmetic

expression.

TYPE CONVERSION IN EXPRESSIONS

When variables and constants of different types are combined in an expression then they are

converted to same data type. The process of converting one predefined type into another is called
type conversion.

Type conversion in ¢ can be classified into the following two types:

Implicit Type Conversion

When the type conversion is performed automatically by the compiler without programmer*s
intervention, such type of conversion is known as implicit type conversion or type promotion.
The compiler converts all operands into the data type of the largest operand.

The sequence of rules that are applied while evaluating expressions are given below:

All short and char are automatically converted to int, then,

If either of the operand is of type long double, then others will be converted to long double and
result will be long double.

Else, if either of the operand is double, then others are converted to double.
48

Else, if either of the operand is float, then others are converted to float.

Else, if either of the operand is unsigned long int, then others will be converted to unsigned long
int.

Else, if one of the operand is long int, and the other is unsigned int, then

if a long int can represent all values of an unsigned int, the unsigned int is converted to long int.
otherwise, both operands are converted to unsigned long int.

Else, if either operand is long int then other will be converted to long int.

Else, if either operand is unsigned int then others will be converted to unsigned int.

It should be noted that the final result of expression is converted to type of variable on left side
of assignment operator before assigning value to it.

Also, conversion of float to int causes truncation of fractional part, conversion of double to float
causes rounding of digits and the conversion of long int to int causes dropping of excess higher

order bits.

Explicit Type Conversion

The type conversion performed by the programmer by posing the data type of the expression of

specific type is known as explicit type conversion.

The explicit type conversion is also known as type casting.

Type casting in ¢ is done in the following form:

(data_type)expression;

where, data_type is any valid ¢ data type, and expression may be constant, variable or
expression.

For example, x=(int)a+b*d;

The following rules have to be followed while converting the expression from one type to
another to avoid the loss of information:

All integer types to be converted to float.

All float types to be converted to double.

All character types to be converted to integer.

FORMATTED INPUT AND OUTPUT

The C Programming Language is also called the Mother of languages. The C language was
developed by Dennis Ritchie between 1969 and 1973 and is a second and third generation of
languages. The C language provides both low and high level features it provides both the power
of low-level languages and the flexibility and simplicity of high-level languages.

C provides standard functions scanf() and printf(), for performing formatted input and output.
These functions accept, as parameters, a format specification string and a list of variables.

The format specification string is a character string that specifies the data type of each variable to
be input or output and the size or width of the input and output.

Now to discuss formatted output in functions.

Formatted Output

The function printf() is used for formatted output to standard output based on a format
specification. The format specification string, along with the data to be output, are the parameters
to the printf() function.

Syntax:

printf (format,datal,data2,...);

In this syntax format is the format specification string. This string contains, for each variable to
be output, a specification beginning with the symbol % followed by a character called the
conversion character.

Example:

printf (-%cl, datal);

The character specified after % is called a conversion character because it allows one data type to

be converted to another type and printed.

See the following table conversion character and their meanings.

Conversion | Meaning

Character

The data is converted to decimal (integer)

The data is taken as a character.

The data is a string and character from the string , are printed until a NULL,

character is reached.

f The data is output as float or double with a default Precision 6.

Symbols Meaning

\n For new line (linefeed return)

\t For tab space (equivalent of 8 spaces)

Example

printf (-%c\nl,datal);

The format specification string may also have text.
Example

printf (-Character is:1%c\nl, datal);

The text "Character is:" is printed out along with the value of datal.
Example with program

#include<stdio.h>

#include<conio.h>

Main()

{

Char alphabh="A";

int numberl= 55;

float number2=22.34;

printf(-char= %c\nl,alphabh);

printf(-int= %d\nl,numberl);

printf(-float= %f\nl,number2);

getch();

clrscr();

retrun O;

}

Output Here...
char =A

int= 55
flaot=22.340000

What is the output of the statement?

printf(-Integer is: %d; Alphabet is:%c\nl,numberl, alpha); Where
numberl contains 44 and alpha contains "Krishna Singh". Give

the answer below.

Between the character % and the conversion character, there may be:

o A minus sign: Denoting left adjustment of thedata.

o Adigit: Specifying the minimum width in which the data is to be output, if the data hasa
larger number of characters then the specified width occupied by the output is larger. If
the data consists of fewer characters then the specified width, it is padded to the right or
to the left (if minus sign is not specified) with blanks. If the digit is prefixed with a zero,
the padding is done with zeros instead ofblanks.

A period: Separating the width from the nextdigit.
A digit following the period: specifying the precision (number of decimal placesfor
numeric data) or the maximum number of characters to beoutput.

Letter 1: To indicate that the data item is a long integer and not anint.

Format specification string Output

|%2d| 19

%2d]| 1123]

%034 9 1009

|%-2d| 7 7]

1965.3d| 2 1002

1%3.1d| 15 |15]

1%3.5d| 15 10015

|%5s| -Outputsting! |Output string|

|%15s| -Outputsting! |Output string|

|%-15s| -Outputsting! |Output string|

|%15.5s| -Outputsting! |Output string|

|%.5s| -Outputsting! |Output|

|%15.5s| -Outputsting! |Output|

1%%f] 87.65 187.650000]
1%.4.15] 87.65 87.71]

Example based on the conversion character:

#include<stdio.h>

#include<conio.h>

main()

{

Int nuM=65;

printf(-Valueofnumis: %d\n:, num);

printf(-Character equivalent of %d is%c\nl, num , num);

getch();

clrscr();

rerurno;

}

OutputHere. ..

char=A

int= 55

flaot=22.340000

Formatted Input

The function scanf() is used for formatted input from standard input and provides many of the
conversion facilities of the function printf().

Syntax

scanf (format, numI, num2,

The function scnaf() reads and converts characters from the standards input depending on the
format specification string and stores the input in memory locations represented by the other
arguments (numl, num?2,....).

For Example:

scanf(-%c %dl,&Name,&Roll No);

Note: the data names are listed as &Name and &Roll No instead of Name and Roll No

53

respectively. This is how data names are specified in a scnaf() function. In case of string type
data names, the data name is not preceded by the character &.

Example with program

Write a function to accept and display the element number and the weight of a proton. The
element number is an integer and weight is fractional.

Solve here:

#include<stdio.h>

#include<conio.h>

main()

{

Inte_num;

Floate wt;

printf(—EntertheElementNo.andWeightofaProton\nl);

scanf(-%d %fl,&e _num,&e wt);

printf (—The Element No.is:l,e_num);
printf(—TheWeightofaProtonis:%f\nl,e_wt);

getch();

return O;

by

UNIT-I1I
CONTROL STRUCTURES, ARRAYS AND STRINGS

DECISION STATEMENTS
If statement:
Syntax :
if(expression)
statementl;
Explanation :
o Expression is BooleanExpression

o It may have true or falsevalue

expression is
true?

execute
statement

h 4

execute
next_statement

Meaning of If Statement :
o It Checks whether the given Expression is Boolean or not !

o If Expression is True Then it executes the statement otherwise jumps tonext_instruction

Sample Program Code :
void main()

{
int a=5,b=6,c;
c=a+b;

if (c==11)
printf("Execute me 1");

printf("Execute me 2");

}
Output :

Execute mel

If Statement:

if(conditional)

{
Statement Nol
Statement No2
Statement No3

Statement No N

}
Note :

More than One Conditions can be Written inside If statement.
1. Opening and Closing Braces are required only when -Codelafter if

statementoccupies multiplelines.

if(conditional)
Statement No 1
Statement No2
Statement No3
In the above example only Statement 1 is a part of if Statement.
1. Code will be executed if condition statement isTrue.
2. Non-Zero Number Inside if means “TRUECondition”
if(100)
printf(""True Condition");

if-else Statement :

We can use if-else statement in ¢ programming so that we can check any condition and

depending on the outcome of the condition we can follow appropriate path. We have true path as

well as false path.

Syntax :
if(expression)

{

statementl;
statement?2;

}

else

{

statementl;
statement2;

}

next_statement;

Explanation :

If expression is True then Statementl and Statement2 are executed
Otherwise Statement3 and Statement4 are executed.

Sample Program on if-else Statement :

void main()

{

int marks=50;
if(marks>=40)

{

printf("Student is Pass™);

}

else

{
printf("Student is Fail");

}

}
Output :

Student is Pass

Flowchart : If Else Statement

execute execute
statementl statement2

execute

next_statement

Consider Example 1 with Explanation:
Consider Following Example —

int num = 20;

if(hnum ==20)

{
printf("True Block™);

ks

else

{
printf("False Block™);

by

If part Executed if Condition Statement is True.
if(num == 20)

{

printf("True Block™);

}
True Block will be executed if condition is True.
Else Part executed if Condition Statement is False.
else

{
printf("False Block™);

¥

Consider Example 2 with Explanation :

More than One Conditions can be Written inside If statement.

int num1l = 20;
int num2 = 40;

if(huml == 20 && num2 == 40)

{
printf(""True Block™);
}
Opening and Closing Braces are required only when -Codelafter if statement occupies multiple
lines. Code will be executed if condition statement is True. Non-Zero Number Inside
if means “TRUE Condition”
If-Else Statement :

if(conditional)

{

/[True code

ks

else

{

//False code

}
Note :

Consider Following Example —

int num = 20;

if(num ==20)
{
printf("True Block™);

¥

else

{
printf("False Block™);
}

If part Executed if Condition Statement is True.

if(num == 20)

{

printf("True Block™);

}
True Block will be executed if condition is True.
Else Part executed if Condition Statement is False.

else

{
printf("False Block™);

¥

More than One Conditions can be Written inside If statement.
int num1 = 20;
int num2 = 40;

if(huml == 20 && num2 == 40)
{
printf("True Block");

}

Opening and Closing Bracesare required only when -Codelafter if statement occupies multiple

lines.
Code will be executed if condition statement is True.
Non-Zero Number Inside if means “TRUE Condition”

Switch statement
Why we should use Switch Case?

One of the classic problem encountered innested if-else / else-if ladderis

calledproblem ofConfusion.
It occurs when no matching else is available for if.

As the number ofalternatives increases the Complexity of programincreases
drastically.
Toovercomethis,CProvideamulti-waydecisionstatementcalled_Switch
Statement

See how difficult is this scenario?

if(Condition 1)
Statement 1
else
{
Statement 2
if(condition 2)
{
if(condition 3)

statement 3
else
if(condition 4)
{
statement 4
}
}

else

{
statement 5
}

}
First Look of Switch Case

switch(expression)

case valuel :
bodyl
break;

case value2 :
body2
break;

case value3 :
body3
break;

default :
default-body
break;

¥

next-statement;
Flow Diagram:

switch(2)
O
. Case 1:
Statementl;
break;

Case 2:
Statement2;
break;

Case 3:

Statement3;
break;

}

StatementN; -

*Steps are Shown in Circles.

How it works?
Switch case checks the value of expression/variable against the list of case values and
when the match is found ,the block of statement associated with that case isexecuted

Expression should be IntegerExpression / Character
Break statement takescontrol out of thecase.

Break Statement isQptional.

#include<stdio.h>

void main()

{

introll=3;

switch (roll)

{

case 1:

printf (" I am Pankaj ");
break;

case 2:

printf (" I am Nikhil ™);
break;

case 3:

printf (" I am John ");
break;

default :

printf ("No student found");
break;

¥
¥

As explained earlier —

3 is assigned to integer variable _roll

Online 5 switch casedecides — -We have to execute blockof code specifiedin3rdcase—.
Switch Case executes code from top to bottom.

It will now enter into first Case [i.e case 1:]
It will validate Case numberwith variable Roll. If
no match found then it will jump to NextCase..

When it finds matching case it will execute block of code specified in that case.

LOOP CONTROL STATEMENTS
While statement:
While Loop Syntax:

initialization;
while(condition)

incrementation;

¥

Note :
For Single Line of Code — Opening and Closing braces are not needed.
while(2) is used for Infinite Loop

Initialization , Incrementation and Condition steps are on different Line.

While Loop is also Entry Controlled Loop.[i.e conditions are checked if found true then and then

only code is executed]

Do while:
Do-While Loop Syntax :

initialization;

incrementation;
}while(condition);

v
Statements

|

— "'\'\,,

= / Condition \/:/

Note :

It is Exit Controlled Loop.

Initialization , Incrementation and Condition steps are on different Line.

It is also called Bottom Tested [i.e Condition is tested at bottom and Body has to execute at least
once |

For statement:

We have already seen the basics of Looping Statement in C. C Language provides us different

kind of looping statements such as For loop, while loop and do-while loop. In this chapter we

will be learning different flavors of for loop statement.
Different Ways of Using For Loop in C Programming
In order to do certain actions multiple times, we use loop control statements.
For loop can be implemented in different verities of using for loop —
e Single Statement inside For Loop
e Multiple Statements inside ForLoop
e No Statement inside For Loop
Semicolon at the end of ForLoop
Multiple Initialization Statement inside For
Missing Initialization in ForLoop
Missing Increment/DecrementStatement
Infinite For Loop

Condition with no ConditionalOperator.

http://www.c4learn.com/c-programming/c-for-loop/

Forwith Single
/ Statement

/ For With
Multiple
Statements

Different Ways of

Writing For Loop B flless Loy

Infinite Loop

Missing
Condition inside

Way 1 : Single Statement inside For Loop

for(i=0;i<5;i++)
printf(""Hello™);
Above code snippet will print Hello word 5 times.

We have single statement inside for loop body.
No need to wrap printf inside opening and closing curly block.

Curly Block is Optional.

Way2: MultipleStatementsinsideForLoop
for(i=0;i<5;i++)

{
printf("Statement1");

printf(""Statement2");
printf("Statement3");

if(condition)

If we have block of code that is to be executed multiple times then we can use curly braces to

wrap multiple statement in for loop.

Way 3 : No Statement inside For Loop
for(i=0;i<5;i++)

{

}

thisisbodyless for loop. It is used to increment value of -il.This verity of for loop is not used

generally.

At the end of above for loop value of i will be 5.

Way4:SemicolonattheendoffForLoop

for(i=0;i<5;i++);

Generally beginners thought that , we will get compile error if we write semicolon at the end of
for loop.

This is perfectly legal statement in C Programming.

This statement is similar to bodyless for loop. (Way 3)

Way5: MultiplelnitializationStatementinsideFor
for(i=0,j=0;i<5;i++)
{

statementl;
statement?2;
statement3;

}

Multiple initialization statements must be seperated by Comma in for loop.

Way6: MissingIncrement/DecrementStatement
for(i=0;i<5;)
{

statementl;
statement?2;
statement3;
i++;

}

however we have to explicitly alter the value i in the loop body.

Way7: MissinglnitializationinForLoop i
= O’

for(;i<5;i++)
{

statementl;
Statement?2;
statement3;

}

we have to set value of _i‘ before entering in the loop otherwise it will take garbage value of _i°.

Waya8: InfiniteForLoop

statementl;
statement?2;
statement3;

if(breaking condition)
break;

i++;

}

Infinite for loop must have breaking condition in order to break for loop. otherwise it will cause

overflow of stack.

Summary of Different Ways of Implementing For Loop

Form Comment

for (i=0;i<10; i++)

Statement1; Single Statement

for (i=0 ;i <10; i++) Multiple Statements within for
{
Statementl;
Statement?2;
Statement3;

}

for (i=0;i<10;i++); For Loop with no Body (Carefully Look at the
Semicolon)

for Multiple initialization & Multiple

67

(i=0,j=0;i<100;i++,j++) Update Statements Separated by Comma
Statementl,

for (;i<10; i++) Initialization not used

for (;i<10;) Initialization & Update not used

for(;;) Infinite Loop, Never Terminates

JUMP STATEMENTS:

Break statement
Break Statement Simply Terminate Loop and takes control out of the loop.

Break in For Loop :
for(initialization ; condition ; incrementation)

{
Statement1;
Statement?2;
break;

ks

Break in While Loop :
initialization ;
while(condition)

{

Statement1;
Statement?2;

incrementation
break;

by

Break Statement in Do-While :
initialization ;

do

{

Statement1;

Statement?2;

incrementation

break;

Jwhile(condition);

Way 1 : Do-While Loop

if (condition)
break :

} while (condition)

Way 2 : Nested for
for (----)

for(----)
{

if (condition)

Way 3 : For Loop

for (----)

if (condition)
break :

}

Way 4 : While Loop

while (- ---)

if (condition)
break :

}

Continue statement:

loop

{

continue;
/Icode

ky

Note :
It is used for skipping part of Loop.

Continue causes the remaining code inside a loop block to be skipped and causes execution to

jump to the top of the loop block

Use of Continue !!

for (initialization ; condition ; Iteration)

continue ;

}

while (condition)

{

if (---)
continue ;

dowhile | gy ¢

if(---)
continue ;

} while (condition) :

Goto statement:

goto label;

Whenever goto keyword encountered then it causes the program to continue on the line , so long

as it is in the scope .

Types of
GotoForward

Backward

goto Label ;

goto Label ;

ARRAYS:

What is an array?

An array is a collection of similar datatype that are used to allocate memory in

a sequential manner.

Syntax : <data type> <array hame>[<size of an array>]

Subscript or indexing: A subscript is property of an array that distinguishes all its stored
elements because all the elements in an array having the same name (i.e. the array name). so to
distinguish these, we use subscripting or indexing option.

e.g. int ar[20];

First element will be: int ar[0];

Second element will be: int ar[1];

Third element will be: int ar[2];

Fourth element will be: int ar[3];

Fifth element will be: int ar[4];

Sixth element will be: int ar[5];

Last element will be: int ar[19];

NOTE: An array always starts from Oindexing.
Example: intar[20];
This above array will store 20 integer type values from 0 to 19.
Advantage of an array:
Multiple elements are stored under a single unit.

Searching is fast because all the elements are stored in asequence.

Types of Array
1. Static Array
2. DynamicArray.

Static Array

An array with fixed size is said to be a static array.
Types of static array:

1. One Dimensional Array

2. Two DimensionalArray.

3. Multi DimensionalArray.

1. One Dimensional Array
An Array of elements is called 1 dimensional, which stores data in column or row form.

Example: int ar[5];

This above array is called one dimensional array because it will store all the elements in

column or in row form
2. Two DimensionalArray.

An array of an array is said to be 2 dimensional array , which stores data in column androw form

Example: int ar[4][5];

This above array is called two dimensional array because it will store all the elements in column
and in row form

NOTE: In above example of two dimensional array, we have 4 rows and 5 columns.

NOTE: In above example of two dimensional array, we have total of 20 elements.

73

3. Multi DimensionalArray.

This array does not exist in ¢ and c++.

Dynamic Array.
This type of array also does not exist in ¢ and c++.

Example: Program based upon array:

WAP to store marks in 5 subjects for a student. Display marks in 2"%nd 5"subject.

#include<stdio.h>
#include<conio.h>

void main()

{

int ar[5];

inti;

for(i=0;i<5;i++)

{

printf(-\n Entermarks in -,i,
—subjectl);scanf(-%odl, &ar[i]);
}

printf(-Marks in 2"subject
is:Lar[1]);printf(-Marks in 5"subject
is:lar[4]);

¥
STRINGS

What is String?
A string is a collection ofcharacters.
A string is also called as an array ofcharacters.
A String must access by %s access specifier in ¢ andc++.
A string is always terminated with \O (Null)character.
Exampleof string:-Gauravl
A string always recognized in doublequotes.

A string also consider space as acharacter.
74

Example: | GauravAroral
The above string contains 12characters.
Example: Charar[20]
The above example will store 19 character with | nullcharacter.
Example: Program based uponString.
WAP to accept a complete string (first name and last name) and display hello message in the
output.
include<stdio.h>
#include<conio.h>
#include<string.h>
void main ()
{
char str1[20];
char str2[20];
printf(-EnterFirst
Namel);scanf(-%osl,&strl);
printf(-Enter lastNamel);
scanf(-%sl,&str2);
puts(strl);
puts(str2);
}

String Functions in C:

Our c¢ language provides us lot of string functions for manipulating the string.

All the string functions are available in string.h header file.

These String functions are:
strlen().
strupr().
striwr().

stremp().

strcat().

strapy().
strrev().

1. strlen().

This string function is basically used for the purpose of computing the ength of string.

Example: char str=IGaurav Aroral;
int length= strlen(str);
printf(-Thelength of the stringis =I,str);

2. strupr().
This string function is basically used for the purpose of converting the case sensitiveness of the

string i.e. it converts string case sensitiveness into uppercase.

Example: char str=-gauravl
strupr(str);
printf(-Theuppercaseof thestringis :%sl,str);

3. striwr().
This string function is basically used for the purpose of converting the case sensitiveness of the
string i.e it converts string case sensitiveness into lowercase.
Example: char str=-gauravl
striwr(str);

printf(-TheLowercaseof thestringis:%os |,str);

4. stremp().

This string function is basically used for the purpose of comparing two string.
This string function compares two strings character by characters.

Thus it gives result in three cases:

Case 1: if first string > than second string then, result will be true.

76

Case 2: if first string < than second string then, result will be false.

Case 3: if first string = = to second string then, result will be zero.

Example:

char

strl=-Gauravi;char
str2=-Aroral;

char str3=strcmp(strl,str2);
printf(-%osl,str3);

5. strcat().
This string function is used for the purpose of concatenating two strings ie.(merging two or more

strings)

Example:

char strl = -Gauravl;
char str2 = -Aroral;
char str3[30];
str3=strcat(strl,str2);
printf(-%osl,str3);

6. strcpy()
This string function is basically used for the purpose of copying one string into another string.

char strl= -Gauravi;
char str2[20];

str2 = strcpy(str2,strl);
printf(-%osl,str2);

6. strrev()

This string function is basically used for the purpose of reversing the string.

char strl= -Gauravi;
char str2[20];

str2= strrev(str2,strl);
printf(-%osl,str2);

Example: Program based upon string functions.

WAP to accept a string and perform various operations:
1. To convert string into uppercase.

2. To reverse the string.

3. To copy string into anotherstring.

4. To compute length depending upon userchoice.

include<stdio.h>
include<conio.h>

#include<string.h>

void main()

{

char str[20];

char str1[20];

int opt,len;

printf(-\n MAINMENUI);

printf(-\n 1. Convert stringinto
uppercasel);printf(-\n 2. Reversethestringl);
printf(-\n 3. Copyonestringinto
anotherstringl);printf(-\n 4.Compute length of

stringl); printf(-Enter string|);
scanf(-%sl, &str);
printf(-Enter your choicel);
scanf(-%dl,&opt);
switch(opt)

{

casel: strupr(str);

default:

¥

printf(-The string in uppercase is :%s .str);
break;

strrev(str);

printf(-The reverse of string is : %sl,str);
break;

strcpy(strl,str);

printf(-New copied string is : %sl,strl);

break;

len=strlen(str);

printf(-The length of the string is : %sl,len);
break;

printf(-Ypuhaveentered awrongchoice.l);

UNIT-1
FUNCTIONS AND POINTERS
FUNCTIONS

A function is itself a block of code which can solve simple or complex task/calculations.
A function performs calculations on the data provided to it is called "parameter” or "argument".

A function always returns single value result.

Types of function:
1. Built in functions(Libraryfunctions)
a.) Inputting Functions.

b.) Outputting functions.

2. User definedfunctions.
a.)fact();
b.) sum();

Parts of a function:
1. Functiondeclaration/Prototype/Syntax.
2. FunctionCalling.

3. FunctionDefinition.

1.)Function Declaration:

Syntax: <return type > <function name>(<type of argument>)

The declaration of function name, its argument and return type is called function declaration.
2.) Function Calling:
The process of calling a function for processing is called function calling.

Syntax: <var_name>=<function_name>(<list of arguments>).

3.) Function defination:

The process of writing a code for performing any specific task is called function defination.

Syntax:

<return type><function name>(<type of arguments>)
{

<statement-1>

<statement-2>

return(<vlaue>)
}

Example: program based upon function:
WAP to compute cube of a no. using function.
#include<stdio.h>
#include<conio.h>
void main()

{

int c,n;

int cube(int);

printf("Enter a no.");

scanf("%d",&n);

c=cube(n);

printf(""cube of a no. is=%d",c);

}

int cube(int n)

{

c=n*n*n;

return(c);

¥

WAP to compute factorial of a no. using function:
#include<stdio.h>
#include<conio.h>

void main()

{

int n,f=1;

int fact(int)
printf("Enter a no.");
scanf("%d",&n);
f=fact(n);
printf(*"The factorial of a no. is:=%d"f);
}

int fact(int n)

int f=1;

{

for(int i=n;i>=n;i--)
{

f=f*i;

}

return(f);

¥

Recursion

Firstly, what is nested function?

When a function invokes another function then it is called nested function.

But,

When a function invokes itself then it is called recursion.

NOTE: In recursion, we must include a terminating condition so that it won't execute to infinite

time.

Example: program based upon recursion:

WAP to compute factorial of a no. using Recursion:
#include<stdio.h>

#include<conio.h>

void main()

{
intn,f;
int fact(int)
printf("Enter a no.");
scanf("%d",&n);
f=fact(n);
printf(*"The factorial of a no. is:=%d"f);
}
int fact(int n)
int f=1;
{
if(n=0)
return(f);
else
return(n*fact(n-1));
}
Passing parameters to a function:
Firstly, what are parameters?

parameters are the values that are passed to a function for processing.

There are 2 types of parameters:
a.) Actual Parameters.
b.) FormalParameters.

a.) ActualParameters:
These are the parameters which are used in main() function for function calling.
Syntax: <variable name>=<function name><actual argument>

Example: f=fact(n);

b.) Formal Parameters.

These are the parameters which are used in function defination for processing.

83

Methods of parameters passing:
1.) Call by reference.
2.) Call by value.

1.) Call by reference:

In this method of parameter passing , original values of variables are passed from calling
program to function.

Thus,

Any change made in the function can be reflected back to the calling program.

2.) Call by value.

In this method of parameter passing, duplicate values of parameters are passed from calling
program to function defination.

Thus,

Any change made in function would not be reflected back to the calling program.

Example: Program based upon call by value:
include<stdio.h>

include<conio.h>

void main()

{

int a,b;

a=10;

b=20;

void swap(int,int)

printf(*"The value of a before swapping=%d",a);
printf(""The value of b beforeswapping=%d",b);
voidswap(a,b);

printf("The value of a after swapping=%d",a);

printf(*"The value of b afterswapping=%d",b);

}

void swap(int X, int y)
{

intt;

t=X;

X=Y,

y=t;

}

STORAGE CLASSES
Every Variable in a program has memory associated with it.
Memory Requirement of Variables is different for different types of variables.

In C, Memory is allocated & released at different places

Term Definition

Scope Region or Part of Program in which Variable is accessible

Extent Period of time during which memory is associated with variable

Storage Manner in which memory is allocated by the Compiler for Variable

Class Different Storage Classes

Storage class of variable Determines following things
Where the variable is stored

Scope of Variable

Default initial value

Lifetime of variable

A. Wherethevariableisstored:
Storage Classdetermines the location of variable, where it is declared. Variables declared with
auto storage classes are declared inside main memory whereas variables declared with keyword

register are stored inside the CPU Register.

http://www.c4learn.com/c-programming/c-auto-storage-class/

B. Scope ofVVariable

Scope of Variable tells compile about the visibility of Variable in the block. Variable may have
Block Scope, Local Scope and External Scope. A scopeis the context within a computer
program in which a variable name or other identifier is valid and can be used, or within which a
declaration has effect.

C. DefaultInitial\VValueoftheVariable

Whenever we declare a Variable in C, garbage value is assigned to the variable. Garbage Value

may be considered as initial value of the variable. C Programming have different

storageclasseswhich has different initial values such as Global Variable have Initial VValue as 0

while the Local auto variable have default initial garbage value.

D. Lifetime ofvariable
Lifetime of the = Time Of variable Declaration - Time of Variable Destruction
Suppose we have declared variable inside main function then variable will be destroyed only

when the control comes out of the main .i.e end of the program.

Different Storage Classes:
Auto Storage
ClassStatic Storage
Class Extern Storage

ClassRegqister Storage

Class

Automatic (Auto) storage class

This is default storage class

All variables declared are of type Auto by default

In order to Explicit declaration of variable use _auto‘ keyword
auto int num1 ; // Explicit Declaration

Features:

Storage Memory

http://en.wikipedia.org/wiki/Scope_(computer_science)
http://www.c4learn.com/c-programming/c-storage-class/
http://www.c4learn.com/c-programming/c-storage-class/
http://www.c4learn.com/c-programming/c-storage-class/
http://www.c4learn.com/c-programming/c-auto-storage-class/
http://www.c4learn.com/c-programming/c-auto-storage-class/
http://www.c4learn.com/c-programming/c-extern-storage-class/
http://www.c4learn.com/c-programming/c-extern-storage-class/
http://www.c4learn.com/c-programming/c-register-storage-class/
http://www.c4learn.com/c-programming/c-register-storage-class/

Local / Block Scope

Life time Exists as long as Control remains in the
block

Default initial Garbage
Value

Example

void main()

{

auto mum =20 ;

{

auto num =60 ;
printf("nNum : %d",num);

}

printf("nNum : %d",num);

¥

Output :
Num :60
Num :20

Note :
Two variables are declared in different blocks , so they are treated as different variables

External (extern) storage class in C Programming

Variables ofthisstorageclass are -Global variablesl|

Global Variables are declared outside the function and are accessible to all functions in the
program

Generally , External variables are declared again in the function using keyword extern

In order to Explicit declaration of variable use _extern‘ keyword

extern int num1 ; // Explicit Declaration

Features :

Storage Memory

Scope Global / File Scope

Life time Exists as long as variable is running

Retains value within the function

Default initial VValue Zero

Example

intnum="75;
void display();

void main()

{

extern int num ;

printf("nNum : %d",num);
display();
}

void display()
{

extern int num ;
printf("nNum : %d",num);
}

Output :
Num :75
Num :75

Note :

Declaration within the function indicates that the function uses external variable

Functions belonging to same source code , does not require declaration (no need to write extern)

If variable is defined outside the source code , then declaration using extern keyword is required

Static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the

life-time of the program instead of creating and destroying it each time it comes into and goes
out of scope. Therefore, making local variables static allows them to maintain their values
between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that
variable's scope to be restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy of that
member to be shared by all the objects of its class.

#include <stdio.h>

/* function declaration */
void func(void);

static int count = 5; /* global variable */

main() {

while(count--) {
func();

}

returnO;

by

[* function definition */
void func(void) {

static int i = 5; /* local static variable */
i++;

printf("i is %d and count is %d\n", i, count);

by

When the above code is compiled and executed, it produces the following result —
i is 6 and count is 4

i is 7 and count is 3

i is 8 and count is 2

i is 9 and count is 1

i is 10 and count isO

Register Storage Class

register keyword is used to define local variable.

Local variable are stored in register instead of RAM.

As variable is stored in register, the Maximum size of variable = Maximum Size of Register
unary operator [&] is not associated with it because Value is not stored in RAM instead it is
stored in Register.

This is generally used for faster access.

Common use is -Counter-

Syntax
{

register int count;

}

Register storage classes example
#include<stdio.h>

int main()

{

int num1,num2;
register int sum;

printf("\nEnter the Number 1 : ");
scanf("%d",&num1l);

printf("\nEnter the Number 2 : ");
scanf("%d",&num2);

sum = numl +numz2;
printf("\nSum of Numbers : %d",sum);
return(0);

}

Explanation of program

Refer below animation which depicts the register storage classes —

int maint>

int alb:

register int c;

clrscril;

printf ¢"Enter first numbersn''};
scanf ("xd" . &ad;

printf ¢"Enter second numbersn''l;
scanf ¢"xd" . &bhd;

c=ath;

printf{"The sum of *d and *d iz *d".a.b.c);
getchd;

return @3

In the above program we have declared two variables num1,num2. These two variables are
stored in RAM.

Another variable is declared which is stored in register variable.Register variables are stored in
the register of the microprocessor.Thus memory access will be faster than other variables.

If we try to declare more register variables then it can treat variables asAuto storage variablesas

memory of microprocessor is fixed and limited.
Why we need Register Variable ?
Whenever we declare any variable inside C Program then memory will be randomly allocated at

particular memory location.

We have to keep track of that memory location. We need to access value at that memory location

using ampersand operator/Address Operatori.e (&).

If we store same variable in the register memory then we can access that memory location
directly without using the Address operator.

Register variable will be accessed faster than the normal variable thus increasing the operation
and program execution. Generally we use register variable as Counter.

Note : It is not applicable for arrays, structures or pointers.

Summary of register Storage class

Keyword register

Storage Location CPU Register

http://en.wikipedia.org/wiki/RAM
http://www.c4learn.com/c-programming/c-auto-storage-class/
http://www.c4learn.com/c-programming/c-pointer-address-operator/

Keyword register

Initial Value Garbage

Life Local to the block in which variable is declared.

Scope Local to the block.

Preprocessor directives

Before a C program is compiled in a compiler, source code is processed by a program called
preprocessor. This process is called preprocessing.

Commands used in preprocessor are called preprocessor directives and they begin with —#l
symbol.

Below is the list of preprocessor directives that C language offers.

S.no Preprocessor Syntax Description

This macro defines
constant value and
can be any of the

#define basic data types.

The source code of
the file -file_namel
is included in the
Header file #include main program at the

inclusion <file_name> specified place

Set of commands are
included or excluded
#ifdef, #endif, in source program

Conditional #if, before compilation

compilation #else, #ifndef with respect to the

condition

#undef is used to
undefine a defined
macro variable.
#Pragma is used to
call a function before
and after main

Other functionina C

directives #undef, #pragma program

A program in C language involves into different processes. Below diagram will help you to

understand all the processes that a C program comes across.

EXAMPLE PROGRAM FOR #DEFINE, #INCLUDE PREPROCESSORS IN C:

#define — This macro defines constant value and can be any of the basic data types.
#include<file_name> — The source code of the file -file_namelis included in the main
Qorogram where -#include <file_name>lis mentioned.

#include <stdio.h>

#define height 100
#define number 3.14
#define letter 'A'

#define letter_sequence "ABC"
#define backslash_char '\?"

void main()
{
printf("value of height : %d \n", height);
printf("value of number : %f \n", number);
printf("value of letter : %c \n", letter);
printf(“value of letter_sequence : %s \n", letter_sequence);
printf("value of backslash_char : %c \n", backslash_char);

X
OUTPUT:

value of height : 100

value of number : 3.140000
value of letter : A

value of letter_sequence : ABC

value of backslash_char : ?

EXAMPLE PROGRAM FOR CONDITIONAL COMPILATIONDIRECTIVES:

A) EXAMPLE PROGRAM FOR #IFDEF, #ELSE AND #ENDIF INC:

~#ifdefldirective checks whether particular macro is defined or not. If it is defined, -Ificlause
statements are included in source file.

Otherwise, -elselclausestatements areincluded in sourcefileforcompilation and execution.

#include <stdio.h>
#define RAJU 100

int main()
{
#ifdef RAJU
printf("RAJU is defined. So, this line will be added in " \
"this C file\n");
#else
printf("RAJU is not defined\n");
#endif
return0;

¥
OUTPUT:

RAJU is defined. So, this line will be added in this C file

B) EXAMPLE PROGRAM FOR #IFNDEF AND #ENDIF INC:

#ifndef exactly actsasreverseas#ifdef directive. If particular macro is not defined, -Ificlause statements

are included in source file.

Otherwise, else clause statements are included in source file for compilation and execution.

#include <stdio.h>
#define RAJU 100

int main()
{
#ifndef SELVA
{
printf("SELVA is not defined. So, now we are going to " \
"define here\n™);
#define SELVA 300
}
#else
printf("SELVA is already defined in the programl);

#endif
returnO;

X
OUTPUT:

SELVA is not defined. So, now we are going to define here

C) EXAMPLE PROGRAM FOR #IF, #ELSE AND #ENDIF INC:

-Ificlausestatement is included in sourcefile ifgivencondition istrue.

Otherwise, else clause statement is included in source file for compilation and execution.

#include <stdio.h>
#define a 100
int main()
{
#if (a==100)
printf("This line will be added in this C file since " \
"a\=100\n");
#else
printf("This line will be added in this C file since " \
"a is not equal to 100\n");
#endif
return0;

OUTPUT:

This line will be added in this C file since a =100

EXAMPLE PROGRAM FOR UNDEF IN C:
This directive undefines existing macro in the program.

#include <stdio.h>

#define height 100

void main()

{
printf("First defined valueforheight : %d\n",height);
#undefheight // undefiningvariable
#defineheight600 // redefining the same for new value
printf(“value of height after undef \&redefine:%d",height);

X
OUTPUT:

First defined value for height : 100
value of height after undef & redefine : 600

EXAMPLE PROGRAM FOR PRAGMA IN C:

Pragma is used to call a function before and after main function in a C program.

#include <stdio.h>

void functionl();
void function2();

#pragma startup functionl
#pragma exit function2

int main()

{

printf ("\n Now we are in main function™);
returno;

¥

void functionl()

printf("\nFunctionl is called before main function call");

¥

void function2()

{

printf ("\nFunction2 is called just before end of " \
"main function™) ;"

OUTPUT:

Functionl is called before main function call

Now we are in main function

Function2 is called just before end of main function

MORE ON PRAGMA DIRECTIVE IN C:

S.no

Pragma command

description

#Pragma startup

<function_name_1>

This directive executes function

named -function_name_llbefore

#Pragma exit

<function_name_2>

This directive executes function
named -function_name_2ljust

before termination of the program.

#pragma warn — rvl

If function doesn‘t return a value,
then warnings are suppressed by

this directive while compiling.

#pragma warn — par

If function doesn‘t use passed
function parameter , then warnings

are suppressed

#pragma warn — rch

If a non reachable code is written
inside a program, such warnings

are suppressed by this directive.

POINTERS

Pointer Overview

Variable Name =»

Value of Variable = 3 65524 65522

Address of Location = 65524 65522 65520

Consider above Diagram which clearly shows pointer concept in ¢ programming —

I is the name given for particular memory location of ordinary variable.

Let us consider it‘s Corresponding address be 65624 and the Value stored in variable ,,i* is 5
Theaddressofthevariable,,i*isstoredinanotherintegervariablewhosenameis,,j*“andwhich is having
corresponding address65522

thus we can say that —
j=&i;

i.e
j = Address of i
Here j is not ordinary variable , It is special variable and called pointer variable as it stores the

address of the another ordinary variable. We can summarize it like —

Variable Name Variable Value Variable Address

65524

i 65524 65522

B. C Pointer Basic Example:

#include<stdio.h>

int main()

{
int *ptr, I;
i=11;

/* address of i is assigned to ptr */

ptr = &i;

/* show i's value using ptr variable */
printf(*"Value of i : %d", *ptr);

return O;

¥

See Output and Download »

You will get value of i = 11 in the above program.
C. Pointer Declaration Tips:

1. Pointer is declared with preceding *:

int *ptr; //Here ptr is Integer Pointer Variable

int ptr; //Here ptr is Normal IntegerVariable

2. Whitespace while Writing Pointer:

pointer variable name and asterisk can contain whitespace because whitespace is ignored by
compiler.

int *ptr;

int *ptr;

int * ptr;

All the above syntax are legal and valid. We can insert any number of spaces or blanks inside

declaration. We can also split the declaration on multiple lines.

D. Key points for Pointer:

Unline ordinary variables pointer is special type of variable which stores the address of ordinary
variable.

Pointer can only store the whole or integer number because address of any type of variable is
considered as integer.

It is good to initialize the pointer immediately after declaration

& symbol is used to get address of variable

* symbol is used to get value from the address given by pointer.

E. Pointer Summary:

Pointer is Special Variable used to Reference and de-reference memory. (*Will be covered in

upcoming chapter)

http://demo.c4learn.com/c/pointer/tryit.php?filename=pointer_example
http://www.c4learn.com/c-programming/c-dereferencing-pointer/

When we declare integer pointer then we can only store address of integer variable into that
pointer.

Similarly if we declare character pointer then only the address of character variable is stored into
the pointer variable.

Pointer storing the address of following DT Pointer is called as

Integer Integer Pointer

Character Character Pointer

Double Double Pointer

Float Float Pointer

Pointer is a variable which stores the address of another variable

Since Pointer is also a kind of variable , thus pointer itself will be stored at different memory

location.

2 Types of Variables :

Simple Variable that stores a value such as integer,float,character

Complex Variable that stores address of simple variable i.e pointer variables
Simple Pointer Example #1 :

#include<stdio.h>

int main()
{
inta=3;
int *ptr;
ptr = &a;

return(0);
}

Explanation of Example :

Point Variable 'a' Variable 'ptr'

Name of Variable ptr

Point Variable 'a'

Variable 'ptr’

Type of Value that it holds Integer

Address of Integer 'a’

Value Stored

2001

Address of Variable 2001 (Assumption)

4001 (Assumption)

Simple Pointer Example #2 :
#include<stdio.h>

int main()

{

inta=3;

int *ptr,**pptr;
ptr =&a;

pptr = &ptr;
return(0);

}

Explanation of Example

With reference to above program —

2001 4001

a ptr

We have following associated points —

Point Variable'a’ | Variable 'ptr' Variable "pptr’

Name of Variable ptr

pptr

Type of Value that it holds Integer Address of 'a' Address of 'ptr’

Value Stored 2001

4001

Point Variable 'a’ | Variable 'ptr’ Variable "pptr’

Address of Variable 2001 4001 6001

Pointer address operator in C Programming

Pointeraddressoperatorisdenotedby_& ‘symbol

When we use ampersand symbol as a prefix to a variable name _&°, it gives the address of that
variable.

lets take an example —

&n - It gives an address on variable n

Working of address operator

#include<stdio.h>
void main()

{

int n =10;

printf("\nValue of n is : %d",n);
printf("\nValue of &n is : %u",&n);

}
Output :

Value of nis: 10

Value of &n is :1002

Consider the above example, where we have used to print the address of the variableusing
ampersandoperator.

In order to print the variable we simply use name of variable while to print the address of the

variable we use ampersand along with %u
printf("\nValue of &n is : %u",&n);

Understanding address operator

Consider the following program —

#include<stdio.h>
int main()

L

inti=>5;

int *ptr;

ptr = &i;

printf("\nAddressofi : %u",&i);
printf(*\nValue of ptr is :%u",ptr);

return(0);
}

After declaration memory map will be like this —
inti=>5;
int *ptr;

ptr

N _ Garbage value
5 8930 inside variable ptr

65524 65522

after Assigning the address of variable to pointer , i.e after the execution of this statement —
ptr =&i;

Address of Variable
6552+ G i gets stored in ptr

6:

Invalid Use of pointer address operator

Address of literals

In C programming using address operator over literal will throw an error. We cannot use address
operator on the literal to get the address of the literal.

&75

Only variables have an address associated with them, constant entity does not have
corresponding address. Similarly we cannot use address operator over character literal —

&('a')

Character _a“ is literal, so we cannot use address operator.

Address of expressions

(a+b)will evaluate addition of values present in variables and output of (a+b)is nothing but
Literal, so we cannot use Address operator
&(a+h)

Memory Organization for Pointer Variable:

When we use variable in program then Compiler keeps some memory for that variable
depending on the data type

The address given to the variable is Unique with that variable name

When Program execution starts the variable name is automatically translated into the

corresponding address.

i - Location Name

3 > Value at Location

65524 — = Location Number

Explanation :
Pointer Variableis nothing but a memory address which holds another address .

Intheaboveprogram—ilisnamegivenformemorylocationforhnumanunderstanding,but
compilerisunabletorecognize—il.Compilerknowsonlyaddress.
In the next chapter we will be learning , Memory requirement for storing pointer variable.

Syntax for Pointer Declaration in C :

data_type *<pointer_name>;

Explanation :

data_type

Type of variable that the pointer points to

OR data type whose address is stored in pointer_name
Asterisk(*)

Asterisk is called as Indirection Operator

It is also called as Value at address Operator
It Indicates Variable declared is of Pointer type

105

http://www.c4learn.com/c-programming/c-pointer-concept/
http://www.c4learn.com/c-programming/c-pointer-variable-memory-required/

pointer_name

Must be any Valid C identifier

Must follow all Rules of Variable name declaration
Ways of Declaring Pointer Variable:

[box] * can appears anywhere between Pointer_name and Data Type
int *p;

int* p;

int *p;

Example of Declaring Integer Pointer:

intn=20;

int *ptr;

Example of Declaring Character Pointer:

char ch ="A’;

char *cptr;

Example of Declaring Float Pointer:

float fvar = 3.14;

float *fptr;

How to Initialize Pointer in C Programming?

pointer = &variable;

Above is the syntax for initializing pointer variable in C.

Initialization of Pointer can be done using following 4 Steps :

Declare a Pointer Variable and Note down the Data Type.

Declare another Variable with Same Data Type as that of Pointer Variable.
Initialize Ordinary Variable and assign some value to it.

Now Initialize pointer by assigning the address of ordinary variable to pointer variable.

below example will clearly explain the initialization of Pointer Variable.

#include<stdio.h>
int main()

{

inta; /Il Step 1
int *ptr; // Step2

a=10; Il Step 3
ptr =&a; // Step4

return(0);
}

Explanation of Above Program :

Pointer should not be used before initialization.
—ptrlispointervariableusedtostoretheaddressofthevariable.

Stores address of the variable,a®.

Now —ptrlwill contain the address of the variable -al.

Note :

[box]Pointers are always initialized before using it in the program[/box]
Example : Initializing Integer Pointer

#include<stdio.h>
int main()

{

inta=10;

int *ptr;

ptr =&a;
printf(*\nValue of ptr : %u",ptr);

return(0);

}
Output :

Value of ptr : 4001

Pointer arithematic

Incrementing Pointer:

Incrementing Pointer is generally used in array because we have contiguous memory in array and
we know the contents of next memory location.

Incrementing Pointer Variable Depends Upon data type of the Pointer variable

Formula : (After incrementing)

new value = current address + i * size_of(data type)

Three Rules should be used to increment pointer —

Address + 1 = Address

Address++ =Address

++Address =Address
Pictorial Representation :

i ptr ptr
Aft
1000 %er 1002

1000 3058 Incrementing 058

Wariable cdlearn.co.ce

Data Older Address stored in | Next Address stored in pointer after

Type pointer incrementing (ptr++)

int 1000 1002

float 1000 1004

char 1000 1001

Explanation : Incremeting Pointer

Incrementing a pointer to an integer data will cause its value to be incremented by 2.

This differs from compiler to compiler as memory required to store integer vary compiler to
compiler

[box]Note to Remember : Increment and Decrement Operations on pointer should be used
when we have Continues memory (in Array).[/box]

Live Example 1 : Increment Integer Pointer

#include<stdio.h>
int main(){
int *ptr=(int *)1000;

ptr=ptr+1;
printf(""New Value of ptr : %u",ptr);

return O;

}
Output :

New Value of ptr : 1002
Live Example 2 : Increment Double Pointer
#include<stdio.h>

int main(){
double *ptr=(double *)1000;

ptr=ptr+1;
printf(""New Value of ptr : %u",ptr);

return O;

}
Output :

New Value of ptr : 1004
Live Example 3 : Array of Pointer

#include<stdio.h>

int main(){

float var[5]={1.1f,2.2f,3.3f};
float(*ptr)[5];

ptr=&uvar,
printf(*'Value inside ptr : %u",ptr);

ptr=ptr+1;
printf(*"'VValue inside ptr : %u",ptr);

return O;

}
Output :

Value inside ptr : 1000
Value inside ptr : 1020

flocat *ptx[5] float wvaxr[5]

ptxr[O]
ptxr[1l]
ptr[2]
ptxr[3]

ptxr[4]

Explanation :

Address of ptr[0] = 1000

We are storing Address of float array to ptr[0]. —
Address of ptr[1]

= Address of ptr[0] + (Size of Data Type)*(Size of Array)
= 1000 + (4 bytes) * (5)

=1020

Address of Var[0]...Var[4] :

Address of var[0] = 1000

Address of var[1] = 1004

Address of var[2] = 1008

Address of var[3] = 1012

Address of var[4] = 1016

Formula : (After decrementing)

new_address = (current address) - i * size_of(data type)

[box]Decrementation of Pointer Variable Depends Upon : data type of the Pointer variable[/box]

Example :

i
ptr After ptr

(o) — s @)

1000 2053 decrementing 5053

Wariable cdlearn.co.co

Data Older Address stored in Next Address stored in pointer after

Type pointer incrementing (ptr-)

int 1000 0998

float 1000 0996

char 1000 0999

Explanation:

Decrementing a pointer to an integer data will cause its value to be decremented by 2

This differs from compiler to compiler as memory required to store integer vary compiler to
compiler

Pointer Program: Difference between two integer Pointers

#include<stdio.h>
int main(){

float *ptr1=(float *)1000;
float *ptr2=(float *)2000;

printf("\nDifference : %d",ptr2-ptrl);

return O;

}
Output :

Difference : 250
Explanation :
Ptrl and Ptr2 are two pointers which holds memory address of Float Variable.
Ptr2-Ptrl will gives us number of floating point numbers that can be stored.
ptr2 - ptrl = (2000 - 1000) / sizeof(float)
=1000/4
=250
Live Example 2:
#include<stdio.h>

struct var{

char cvar,

int ivar;

float fvar;
¥

int main(){
struct var *ptrl,*ptr2;

ptrl = (struct var *)1000;
ptr2 = (struct var *)2000;

printf("Difference=%d",ptr2-ptrl);

returnO;

}
Output:

Difference = 142

Explanation :

ptr2-ptrl = (2000 - 1000)/Sizeof(struct var)
=1000/ (1+2+4)
=1000/7
=142

Adding integer value with Pointer

In C Programming we can add any integer number to Pointer variable. It is perfectly legal in ¢

programming to add integer to pointer variable.

In order to compute the final value we need to use following formulae :
final value = (address) + (number * size of data type)

Consider the following example —

int *ptr, n;

ptr = &n;

ptr = ptr +3;

Live Example 1 : Increment Integer Pointer

#include<stdio.h>
int main(){

int *ptr=(int *)1000;

ptr=ptr+3;
printf("New Value of ptr : %u",ptr);

returnO;

}
Output:

New Value of ptr : 1006
Explanation of Program :
In the above program —
int *ptr=(int *)1000;
this line will store 1000 in the pointer variable considering 1000 is memory location for any of
the integer variable.
Formula:
ptr = ptr + 3 * (sizeof(integer))
=1000+3*(2)
=1000 + 6
= 1006
Similarly if we have written above statement like this —
float *ptr=(float *)1000;

then result may be

ptr = ptr + 3 * (sizeof(float))

=1000 + 3 * (4)

=1000 + 12

=1012
Suppose we have subtracted —nl from pointer of any data type having initial addess as
-init_addressithen after subtraction we can write — ptr
= initial_address - n * (sizeof(data_type))
Subtracting integer value withPointer
int *ptr, n;
ptr = &n;
ptr = ptr -3;

Live Example 1 : Decrement Integer Pointer

#include<stdio.h>

int main(){

int *ptr=(int *)1000;

ptr=ptr-3;
printf("New Value of ptr : %u",ptr);

returno;

}

Output:

New Value of ptr : 994

Formula:

ptr = ptr - 3 * (sizeof(integer))
=1000-3*(2)
=1000-6
=994

Summary :

Pointer - Pointer = Integer

Pointer - Integer = Pointer

Differencing Pointer in C Programming Language :
Differencing Means Subtracting two Pointers.

Subtraction gives the Total number of objects between them .

Subtraction indicates -How apart the two Pointers are ?I

C Program to Compute Difference Between Pointers :

#include<stdio.h>

int main()

{

int num , *ptrl *ptr2 ;

ptrl = &num ;
ptr2 =ptrl + 2

printf("%d",ptr2 - ptrl);

return(0);

}
Output :

2
ptrl stores the address of VVariable num

Value of ptr2 is incremented by 4 bytes
Differencing two Pointers
Important Observations :

Suppose the Address of Variable num = 1000.

Statement Value of Ptrl

Value of Ptr2

int num , *ptrl *ptr2 ; Garbage

Garbage

ptrl = &num ; 1000

Garbage

ptr2 =ptrl + 2 ; 1000

1004

ptr2 - ptrl 1000

1004

Computation of Ptr2 — Ptrl :

Remember the following formula while computing the difference between two pointers —

Final Result = (ptr2 - ptrl) / Size of Data Type

Step 1 : Compute Mathematical Difference (Numerical Difference)

ptr2 - ptrl = Value of Ptr2 - Value of Ptrl
= 1004 - 1000
=4

Step 2 : Finding Actual Difference (Technical Difference)

Final Result = 4 / Size of Integer
=4/2
=2

Numerically Subtraction (ptr2-ptrl) differs by 4

As both are Integers they are numerically Differed by 4 and Technically by 2 objects

Suppose Both pointers of float the they will be differed numerically by 8 and Technically by 2
objects

Consider the below statement and refer the following table —

int num = ptr2 - ptrl;

and

If Two Pointers are of Following Data | Numerical Technical

Type Difference Difference

Integer

Float

Character

Comparison between two Pointers :
Pointer comparison is Valid only if the two pointers are Pointing to same array

All Relational Operators can be used for comparing pointers of same type

All Equality and Inequality Operators can be used with all Pointer types
Pointers cannot be Divided or Multiplied

Point 1 : Pointer Comparison

#include<stdio.h>

int main()

{
int *ptrl,*ptr2;

ptrl = (int *)1000;
ptr2 = (int *)2000;

if(ptr2 > ptrl)
printf("Ptr2 is far from ptrl");

return(0);
}

Pointer Comparison of Different Data Types :

#include<stdio.h>

int main()

{
int *ptrl;
float *ptr2;

ptrl = (int *)1000;
ptr2 = (float *)2000;

if(ptr2 > ptrl)
printf("Ptr2 is far from ptrl");

return(0);
}

Explanation :

Two Pointers of different data types can be compared .

In the above program we have compared two pointers of different data types.
It is perfectly legal in C Programming.

[box]As we know Pointers can store Address of any data type, address of the data type is

-Integerlso we can compare address of any two pointers although they are of different data types.[/box]

Following operations on pointers :

Greater Than

Less Than

Greater Than And Equal To

Less Than And Equal To

Equals

Not Equal

Divide and Multiply Operations :
#include<stdio.h>

int main()

{
int *ptrl,*ptr2;

ptrl = (int *)1000;
ptr2 = ptrl/4;

return(0);

}
Output :

‘mc e

= File Edit Search Run Compile Debug j ptions Window Help
NONAMEGB.CPP ——————————————————2

int main()
int *ptrl,=ptr2;

ptrl = {int =)1000;
ptr2 = ptrl/4;

return(0);

% 8:13
[Message

*Error NONAMEDG.CPP 8 Tllegal use of pointer

F1 Help Space View source +=— Edit source F18 Menu

Pointer to pointer

Pointer to Pointer in C Programming
Declaration : Double Pointer

int **ptr2ptr;

Consider the Following Example :
int num = 45, *ptr , **ptr2ptr ;
ptr = #

ptr2ptr = &ptr;

What is Pointer to Pointer ?

Double (**) is used to denote the double Pointer
Pointer Stores the address of the Variable

Double Pointer Stores the address of the Pointer Variable

o

ptr ptreptr

45 3000 4000

3000 4000 5000

T cdlearn.blogspot.com r

Statement What will be the Output ?

*ptr 45

**ptr2ptr 45

ptr &n

ptr2ptr

Notes :

Conceptually we can have Triple n pointers
Example : *****n ****[can be another example
Live Example :

#include<stdio.h>

int main()

{

int num =45, *ptr, **ptr2ptr ;
ptr =&num,;

ptr2ptr = &ptr;

printf("%d", **ptr2ptr);

return(0);

}
Output :

45

UNIT-IV

STRUCTURES AND UNIONS

INTRODUCTION TO STRUCTURE

As we know that Array is collection of the elements of same type , but many time we have to
store the elements of the different data types.

Suppose Student record is to be stored, then for storing the record we have to group together all
the information such as Roll, name, Percent which may be of different data types.

Ideally Structure is collection of different variables under single name.

Basically Structure is for storing the complicated data.

A structure is a convenient way of grouping several pieces of related information together.

Definition of Structure in C

Structure is composition of the different variables of different data types, grouped under same
name.

typedef struct {
char name[64];
char course[128];
int age;
int year;
} student;
Some Important Definitions of Structures
Each member declared in Structure is called member.
char name[64];
char course[128];
int age;

int year;

are some examples of members.
Name given to structure is called as tag
Structure member may be of different data type including user defined data-type also
typedef struct {
char name[64];
char course[128];
book b1,
intyear;
} student;
Here book is user defined datatype.

Declaring Structure Variable inC

In C we can group some of the user defined or primitive data types together and form another
compact way of storing complicated information is called as Structure. Let us see how to declare

structure in ¢ programming language —
Syntax of Structure in C Programming
struct tag
{
data_typel memberl,;
data_type2 member2;
data_type3 member3;
Y
Structure Alternate Syntax
struct <structure_name>
{
structure_Elementl;

structure_Element?2;

structure_Element3;

j

Some Important Points Regarding Structure in C Programming:

Struct keyword is used to declare structure.
Members of structure are enclosed within opening and closing braces.
Declaration of Structure reserves no space.
It is nothing but the — Template / Map / Shape | of the structure .
Memory is created, very first time when the variable is created /Instance is created.
Different Ways of Declaring Structure Variable:
Way 1 : Immediately after Structure Template
struct date
{

int date;

char month[20];

int year;

}oday;

/ 'today" is name of Structure variable
Way 2 : Declare Variables using struct Keyword
structdate
{
intdate;

char month[20];

int year;

}

struct date today;
where -datelis name of structureand-todaylisname ofvariable.
Way 3 : Declaring Multiple Structure Variables
structBook
{
intpages;
char name[20];

int year;

}book1,book2,book3;

C Structure Initialization

When we declare a structure, memory is not allocated for un-initialized variable.

Let us discuss very familiar example of structure student , we can initialize structure variable in
different ways —

Way 1 : Declare and Initialize

struct student
{
char name[20];
int roll;
float marks;
ystdl = { "Pritesh",67,78.3 };

In the above code snippet, we have seen that structure is declared and as soon as after declaration
we have initialized the structure variable.

stdl = { "Pritesh",67,78.3 }
This is the code for initializing structure variable in C programming

Way 2 : Declaring and Initializing Multiple Variables

struct student

{
char name[20];
int roll;

float marks;

stdl = {"Pritesh",67,78.3};
std2 = {"Don",62,71.3};

In this example, we have declared two structure variables in above code. After declaration of
variable we have initialized two variable.

stdl = {"Pritesh",67,78.3};

std2 = {"Don",62,71.3}:

Way 3 : Initializing Single member

struct student
{
int markZl;
int mark2;
intmarks3;
}sub1={67};

Though there are three members of structure,only one is initialized , Then remaining two
members are initialized with Zero. If there are variables of other data type then their initial
values will be —

Data Type Default value if not initialized

integer

float

char NULL

Way 4 : Initializing inside main

struct student

{

int markl;
int mark2;

int mark3;

}

void main()

{
struct student s1 = {89,54,65};

}

When we declare a structure then memory won‘t be allocated for the structure. i.e only writing
below declaration statement will never allocate memory

struct student

{

int markl;
int mark2;
int mark3;
j
We need to initialize structure variable to allocate some memory to the structure.
struct student s1 = {89,54,65};
Some Structure Declarations and It‘'s Meaning :
struct

{
int length;

char *name;
}ptr;

Suppose we initialize these two structure members with following values —

length = 30;
*name = "programming";

Now Consider Following Declarations one by One —

Member Value Address

length

name programming

Example 1 : Incrementing Member

++ptr->length

—++|Operator is pre-increment operator.

Above Statement will increase the value of -length-
Example 2 : Incrementing Member

(++ptr)->length

Content of the length is fetched and then ptr is incremented.

Consider above Structure and Look at the Following Table:-

Expression Meaning

++ptr->length Increment the value of length

(++ptr)->length Increment ptr before accessing length

(ptr++)->length Increment ptr after accessing length

*ptr->name Fetch Content of name

*ptr->name++ Incrementing ptr after Fetching the value

(*ptr->name)++ Increments whatever str points to

*ptr++->name Incrementing ptr after accessing whatever str points to

Accessing Structure Members

Array elements are accessed using the Subscript variable, Similarly Structure members are
accessed using dot [.] operator.

(.)is called as-Structuremember Operatorl.
Use this Operator in between “Structure name” & “member name”
Live Example :

#include<stdio.h>

struct Vehicle
{
int wheels;
char vname[20];
char color[10];

vl ={4,"Nano","Red"};

intmain()

{

printf(*'Vehicle No of Wheels :%d",v1.wheels);
printf(""VehicleName : %s",v1.vname);
printf("VehicleColor : %s",v1.color);
return(0);

}

Output :

Vehicle No of Wheels : 4

VehicleName :Nano

VehicleColor : Red

Note:

Dot operator has Highest Priority than unary, arithmetic, relational, logical Operators

Initializing Array of Structure in C Programming

Array elements are stored in consecutive memory Location.

Like Array , Array of Structure can be initialized at compile time.

Way1 : Initializing After Declaring Structure Array :

129

struct Book
{
char bname[20];
int pages;
char author[20];
float price;
313l ={
{"Let us C",700,"YPK",300.00},
{"Wings of Fire",500,"APJ Abdul Kalam",350.00},
{"Complete C",1200,"Herbt Schildt",450.00}
h
Explanation :

As soon as after declaration of structure we initialize structure with the pre-defined values. For
each structure variable we specify set of values in curly braces. Suppose we have 3 Array
Elements then we have to initialize each array element individually and all individual sets are
combined to form single set.

{"Let us C",700,"YPK",300.00}

Above set of values are used to initialize first element of the array. Similarly —

{"Wings of Fire",500,"APJ Abdul Kalam",350.00}

is used to initialize second element of the array.
Way 2 : Initializing in Main
struct Book

{

char bname[20];

int pages;

char author[20];

float price;
h
void main()
{
struct Book b1[3] = {
{"Let us C",700,"YPK",300.00},
{"Wings of Fire",500,"Abdul Kalam",350.00},
{"Complete C",1200,"Herbt Schildt",450.00}
h
}
Some Observations and Important Points:
Tip #1 : All Structure Members need not be initialized
#include<stdio.h>
struct Book
{
char bname[20];
int pages;

char author[20];

float price;

301[3] ={
{"Book1",700,"YPK"},

{"Book2",500,"AAK",350.00},

{"Book3",120,"HST" 450.00}
+

void main()

{

printf("\nBookName :%s",b1[0].bname);
printf(*\nBook Pages : %d",b1[0].pages);
printf(*\nBook Author : %s",b1[0].author);

printf("\nBook Price :%f",b1[0].price);

}
Output :

BookName : Bookl
Book Pages : 700
Book Author : YPK
Book Price : 0.000000
Explanation:

In this example , While initializing first element of the array we have not specified the price of
book 1.1t is not mandatory to provide initialization for all the values. Suppose we have 5
structure elements and we provide initial values for first two element then we cannot provide
initial values to remaining elements.

{"Book1" 700,,90.00}

above initialization is illegal and can cause compile time error.
Tip #2 : Default Initial Value
struct Book
{
char bname[20];

int pages;

char author[20];
float price;
313l ={
s
{"Book2",500,"AAK",350.00},
{"Book3",120,"HST",450.00}
h
Output:
BookName
Book Pages : 0
Book Author:
Book Price : 0.000000

It is clear from above output , Default values for different data types.

Data Type Default Initialization Value

Integer

Float

Character

Passing Array of Structure to Function in C Programming

Array of Structure can be passed to function as a Parameter.
Function can also return Structure as return type.
Structure can be passed as follow

Live Example :

#include<stdio.h>

#include<conio.h>

struct Example
{
intnuml;

intnum2;

void accept(struct Example sptr[],int n)
{
inti;
for(i=0;i<n;i++)
{
printf("\nEnter num1 : ");
scanf("%d",&sptr[i].num1);

printf("\nEnter num2 : ");

scanf("%d",&sptr[i].num2);

void print(struct Example sptr[],int n)

{
inti;

for(i=0;i<n;i++)

{
printf(""\nNum1 :%d",sptr[i].num1);

printf(""\nNum2 :%d",sptr[i].num2);

void main()
{

inti;
clrscr();
accept(s,3);
print(s,3);
getch();

}

Output :
Enter num1 :
Enter num2 :
Enter num1 :
Enter num2 :
Enter num1 :
Enter num2 :
Num1l: 10
Num?2 :20
Num1 :30

Num?2 :40

Num1 :50

Num?2 :60

Explanation :
Inside main structure and size of structure array is passed.
When reference (i.e ampersand) is not specified in main , so this passing is simple pass by value.
Elements can be accessed by using dot [.] operator
Pointer Within Structure in C Programming:
Structure may contain the Pointer variable as member.
Pointers are used to store the address of memorylocation.
Theycanbede-referencedby,,**“operator.
Example :
struct Sample
{
int *ptr; //Stores address of integer Variable
char *name; //Stores address of CharacterString
}s1;
sl is structure variable which is used to access the “structure members”.
sl.ptr = &num,;
sl.name = "Pritesh"

Here num is any variable but it‘s address is stored in the Structure member ptr (Pointer to
Integer)

Similarly Starting address of the String -Priteshlis stored in structure variable name(Pointer to
Character array)

Whenever we need to print the content of variable num , we are dereferancing the pointer
variable num.

printf("Content of Num : %d ", *s1.ptr);
printf("Name : %s",s1.name);
Live Example : Pointer Within Structure

#include<stdio.h>

struct Student

{

int *ptr; //Stores address of integer Variable
char *name; //Stores address of Character String

}s1;

int main()

{

int roll = 20;

sl.ptr = &roll;

sl.name = "Pritesh";

printf("\nRoll Number of Student :%d",*s1.ptr);

printf(*\nNameofStudent :%s",s1.name);

return(0);
}
Output :

Roll Number of Student : 20

NameofStudent : Pritesh
Some Important Observations:
printf("\nRoll Number of Student : %d",*s1.ptr);

We have stored the address of variable _roll® in a pointer member of structure thus we can access
value of pointer member directly using de-reference operator.

printf(*\nNameofStudent : %s",s1.name);

Similarly we have stored the base address of string to pointer variable _name*. In order to de-
reference a string we never use de-reference operator.

Array of Structure :

Structure is used to store the information of One particular object but if we need to store such
100 objects then Array of Structure is used.

Example :
struct Bookinfo
{
char[20] bname;
int pages;
intprice;
}Book[100];
Explanation :

Here Book structure is used to Store the information of one Book.

In case if we need to store the Information of 100 books then Array of Structure is used.

b1[0] stores the Information of 1st Book , b1[1] stores the information of 2nd Book and So on
We can store the information of 100 books.

book[3] is shown Below

Book[0]

Book[1]

Book[2]
Accessing Pages field of Second Book :
Book[1].pages
Live Example :

#include <stdio.h>

struct Bookinfo

{
char[20] bname;

int pages;
int price;

}book[3];

int main(int argc, char *argv[])

{

inti;

for(i=0;i<3;i++)
{
printf("\nEnter the NameofBook :");

gets(book[i].bname);

printf("\nEnter the Number of Pages :),

scanf("%d",book[i].pages);
printf("\nEnter the Price of Book : ");
scanf("%f",book[i].price);
}

printf("\n
for(i=0;i<3;i++)
{
printf(""\nName of Book : %s",book][i].bname);
printf(""\nNumber of Pages : %d",book[i].pages);
printf(*\nPrice of Book : %f",book]i].price);

}

return O;

ks

Output of the Structure Example:

Enter the Name of Book : ABC
Enter the Number of Pages : 100
Enter the Price of Book200

Enter the Name of Book : EFG
Enter the Number of Pages : 200
Enter the Price of Book300

Enter the NameofBook : HIJ
Enter the Number of Pages : 300

Enter the PriceofBook 500

BookDetails

NameofBook : ABC
Number of Pages : 100
Price of Book :200
NameofBook : EFG
Number of Pages : 200
Price of Book :300
NameofBook :HI
Number of Pages : 300
Price of Book : 500
Union in C Programming:

In C Programming we have came across Structures. Unions are similar
tostructure syntactically.Syntax of both is almost similar. Let us discuss some important points
one by one —

Note #1 : Union and Structure are Almost Similar

union stud struct stud
{ {
int roll; int roll;
char name[4]; char name[4];
int marks; int marks;
¥s1; ¥s1;
If we look at the two examples then we can say that both structure and union are same except
Keyword.
Note #2 : Multiple Members are Collected Together Under Same Name

int roll;

char name[4];

http://www.c4learn.com/index/union-in-c/
http://www.c4learn.com/index/structure-in-c/

int marks;
We have collected three variables of different data type under same name together.

Note #3 : All Union Members Occupy Same Memory Area

roll
“

Bytel | Byte2 | Byte3

Marks

For the union maximum memory allocated will be equal to the data member with maximum size.
In the example character array _name* have maximum size thus maximum memory of the union
will be 4 Bytes.

Maximum Memory of Union = Maximum Memory of Union
Data Member
Note #4 : Only one Member will be active at a time.

Suppose we are accessing one of the data member of union then we cannot access otherdata
member since we can access single data member of union because each data member
sharessame memory.By Using Union we can Save Lot of ValuableSpace

Simple Example:

unionu

{

¥

How to Declare Unionin C ?

Union is similar to that of Structure. Syntax of both are same but major difference between
structure and union is _memory storage_.

http://www.c4learn.com/c-programming/c-union-declaration/
http://www.c4learn.com/c-programming/c-union-declaration/
http://www.c4learn.com/c-programming/c-union-declaration/

In structures, each member has its own storage location, whereas all the members of union use
the same location. Union contains many members of different types,

Union can handle only one member at a time.
Syntax :
union tag
{
union_memberl;
union_member2;

union_member3;

union_memberN;

}instance;

Note :

Unions are Declared in the same way as a Structure.Only -struct Keywordlis replaced with
union

Sample Declaration of Union :
union stud
{

int roll;

char name[4];

int marks;

}sl;<

union stud

{
L

int roll;
char name([4]:;
int marks:;
}ysi;

www.cdlearn.com
Member Memory Required
Roll 2
Name 4
Marks 2

How Memory is Allocated ?

roll
A

Byte 1 Byte 2

Marks
So From the Above fig. We can Conclude —

Union Members that compose a union, all share the same storage area within the computers
memory

Each member within a structure is assigned its own unique storage area
Thus unions are used to observe memory.

Unions are useful for application involving multiple members, where values need not be
assigned to all the members at any one time.

C Programming accessing union members

While accessing union, we can have access to single data member at a time. we can access single
union member using following two Operators —

Using DOT Operator

Using ARROW Operator

Accessing union members DOT operator

In order to access the member of the union we are using the dot operator. DOT operator is used
inside printf and scanf statement to get/set value from/of union member location.

Syntax :

variable_name.member

consider the below union, when we declare a variable of union type then we will be accessing
union members using dot operator.

union emp

{

intid;

char name[20];
Yel;

id can be Accessed by — union_variable.member

Syntax Explanation

el.id Access id field of union

el.name Access name field of union

Accessing union members Arrow operator

Instead of maintain the union variable suppose we store union at particular address then we can
access the members of the union using pointer to the union and arrow operator.

union emp

{

intid,

char name[20];

}rel;

http://www.c4learn.com/c-programming/c-arrow-operator/

id can be Accessed by — union_variable->member

Syntax Explanation

el->id Access id field of union

el->name Access name field of union

C Programs
Program #1 : Using dot operator
#include <stdio.h>
union emp
{
intid;
char name[20];

Yel;

int main(int argc, char *argv[])

{

el.id = 10;

printf("\nID : %d",el.id);
strcpy(el.name,"Pritesh");
printf("\nName : %s",el.name);

return O;

¥

Output :
ID: 10

Name : Pritesh

Program #2 : Accessing same memory

#include <stdio.h>
union emp
{
intid;
char name[20];
Yel;
int main(int argc, char *argv([])
{
el.id = 10;
strcpy(el.name,"Pritesh™);
printf("\nID : %d",el.id);
printf("\nName : %s",el.name);
return O;
}

Qutput :
ID : 1953067600

Name : Pritesh

As we already discussed in the previous article of union basics, we have seen how memory is
shared by all union fields. In the above example —

Total memory for union = max(sizeof(id),sizeof(name))
= sizeof(name)
= 20 bytes

Firstly we have utilized first two bytes out of 20 bytes for storing integer value. After execution
of statement again same memory is overridden by character array so while printing the ID value,
garbage value gets printed

Program #3 : Using arrow operator

#include <stdio.h>
union emp
{
intid;
char name[20];
¥rel;
int main(int argc, char *argv([])
{
el->id = 10;
printf("\nID : %d",el->id);
strcpy(el->name,"Pritesh™);
printf("\nName : %s",e1->name);
return 0;
}

Output :
ID :10

Name : Pritesh

Bitfiels:

Suppose your C program contains a number of TRUE/FALSE variables grouped in a structure
called status, as follows —

struct {
unsigned int widthValidated;
unsigned int heightValidated;

} status;

This structure requires 8 bytes of memory space but in actual, we are going to store either 0 orl
in each of the variables. The C programming language offers a better way to utilize the memory
space in suchsituations.

If you are using such variables inside a structure then you can define the width of a variable
which tells the C compiler that you are going to use only those number of bytes. For example,
the above structure can be re-written as follows —

struct {
unsigned int widthValidated : 1;
unsigned int heightValidated : 1;
} status;

The above structure requires 4 bytes of memory space for status variable, but only 2 bits will be
used to store the values.

If you will use up to 32 variables each one with a width of 1 bit, then also the status structure will
use 4 bytes. However as soon as you have 33 variables, it will allocate the next slot of the
memory and it will start using 8 bytes. Let us check the following example to understand the
concept —

#include <stdio.h>

#include <string.h>

/* define simple structure */
struct {
unsigned int widthValidated:;
unsigned int heightValidated;

} statusl;

/* define a structure with bit fields */
struct {

unsigned int widthValidated : 1;

unsigned int heightValidated : 1;
} status2;
int main() {
printf("Memory size occupied by statusl : %d\n", sizeof(statusl));
printf("Memory size occupied by status2 : %d\n", sizeof(status2));
return 0;
}
When the above code is compiled and executed, it produces the following result —
Memory size occupied by statusl :8
Memory size occupied by status2 :4
Bit Field Declaration
The declaration of a bit-field has the following form inside a structure —
struct {
type [member_name] : width ;
h

The following table describes the variable elements of a bit field —

Elements Description

type An integer type that determines how a bit-field's value is interpreted.
The type may be int, signed int, or unsigned int.

member_name The name of the bit-field.

width The number of bits in the bit-field. The width must be less than or equal
to the bit width of the specified type.

The variables defined with a predefined width are called bit fields. A bit field can hold more
than a single bit; for example, if you need a variable to store a value from 0 to 7, then you can
define a bit field with a width of 3 bits as follows —

150

struct {
unsigned int age : 3;
} Age;

The above structure definition instructs the C compiler that the age variable is going to use only
3 bits to store the value. If you try to use more than 3 bits, then it will not allow you to do so. Let
us try the following example —

#include <stdio.h>

#include <string.h>

struct {
unsigned int age : 3;

} Age;

int main() {
Age.age =4,
printf("Sizeof(Age) : %d\n", sizeof(Age));
printf("Age.age : %d\n", Age.age);
Age.age =7;
printf("Age.age : %d\n", Age.age);
Age.age =8;
printf("Age.age : %d\n", Age.age);
return O;

by

When the above code is compiled it will compile with a warning and when executed, it produces
the following result —

Sizeof(Age) : 4
Age.age :4

Age.age :7

Age.age: 0
Typedef:

The C programming language provides a keyword called typedef, which you can use to give a
type, a new name. Following is an example to define a termBYTE for one-byte numbers —

typedef unsigned char BYTE;

After this type definition, the identifier BYTE can be used as an abbreviation for the
type unsigned char, for example..

BYTE b1, b2;

By convention, uppercase letters are used for these definitions to remind the user that the type
name is really a symbolic abbreviation, but you can use lowercase, as follows —

typedef unsigned char byte;

You can use typedef to give a name to your user defined data types as well. For example, you
can use typedef with structure to define a new data type and then use that data type to define
structure variables directly as follows —

#include <stdio.h>

#include <string.h>

typedef struct Books {
char title[50];
char author[50];
char subject[100];
intbook _id;
} Book;
int main() {
Book book;
strcpy(book:.title, "C Programming™);
strcpy(book.author, "Nuha Ali");

strcpy(book.subject, "C Programming Tutorial™);

152

book.book_id = 6495407,
printf("Book title : %s\n™, book.title);
printf("Book author : %s\n", book.author);
printf("Book subject : %s\n", book.subject);
printf("Book book_id : %d\n", book.book _id);
return 0;

}

When the above code is compiled and executed, it produces the following result —

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

typedef vs #define

#define is a C-directive which is also used to define the aliases for various data types similar
to typedef but with the following differences —

typedef is limited to giving symbolic names to types only where as#define can be used to define
alias for values as well, g., you can define 1 as ONE etc.

typedef interpretation is performed by the compiler whereas #definestatements are processed by
the pre-processor.

The following example shows how to use #define in a program —
#include <stdio.h>
#define TRUE1
#define FALSE 0
int main() {
printf("Value of TRUE : %d\n", TRUE);

printf("Value of FALSE : %d\n", FALSE);

return 0;
}
When the above code is compiled and executed, it produces the following result —
Value of TRUE : 1
Value of FALSE : 0
Enumerated data type:

An enumeration is a user-defined data type consists of integral constants and each integral
constant is give a name. Keyword enum is used to defined enumerated data type.

enum type_name{ valuel, value2,...,valueN };

Here, type_name is the name of enumerated data type or tag.Andvaluel,value2..,valueNare
values of type type_name.

By default, valuel will be equal to 0, value2 will be 1 and so on but, the programmer can change
the default value.

/I Changing the default value of enum elements

enum suit{
club=0;
diamonds=10;
hearts=20;
spades=3;
h
Declaration of enumerated variable

Above code defines the type of the data but, no any variable is created. Variable of
type enum can be created as:

enum boolean{
false;

true;

b
enum boolean check;
Here, a variable check is declared which is of type enum boolean.
Example of enumerated type
#include <stdio.h>
enum week{ sunday, monday, tuesday, wednesday, thursday, friday,saturday};
int main(){
enum week today;
today=wednesday;
printf("%dday",today+1);
return0;

¥
Output

4 day

You can write any program in C language without the help of enumerations but, enumerations
helps in writing clear codes and simplify programming.

Dynamic memory allocation

The exact size of array is unknown untill the compile time,i.e., time when a compier compiles
code written in a programming language into a executable form. The size of array you have
declared initially can be sometimes insufficient and sometimes more than required. Dynamic
memory allocation allows a program to obtain more memory space, while running or to release
space when no space is required.

Although, C language inherently does not has any technique to allocated memory dynamically,
there are 4 library functions under **'stdlib.h*" for dynamic memory allocation.

Function Use ofFunction

Use of Function

Allocates requested size of bytes and returns a pointer first byte of allocated space

Allocates space for an array elements, initializes to zero and then returns a pointer to
memory

free() dellocate the previously allocated space

realloc() Change the size of previously allocated space

malloc()

The name malloc stands for "memory allocation™. The function malloc()reserves a block of
memory of specified size and return a pointer of type voidwhich can be casted into pointer of
any form.

Syntax of malloc()
ptr=(cast-type*)malloc(byte-size)

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of memory
with size of byte size. If the space is insufficient, allocation fails and returns NULL pointer.

ptr=(int*)malloc(100*sizeof(int));

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes respectively
and the pointer points to the address of first byte of memory.

calloc()

The name calloc stands for "contiguous allocation™. The only difference between malloc() and
calloc() is that, malloc() allocates single block of memory whereas calloc() allocates multiple
blocks of memory each of same size and sets all bytes to zero.

Syntax of calloc()

ptr=(cast-type*)calloc(n,element-size);

This statement will allocate contiguous space in memory for an array of nelements. For example:

ptr=(float*)calloc(25,sizeof(float));

http://www.programiz.com/c-programming/c-dynamic-memory-allocation#malloc
http://www.programiz.com/c-programming/c-dynamic-memory-allocation#calloc
http://www.programiz.com/c-programming/c-dynamic-memory-allocation#free
http://www.programiz.com/c-programming/c-dynamic-memory-allocation#realloc

This statement allocates contiguous space in memory for an array of 25 elements each of size of
float, i.e, 4 bytes.

free()

Dynamically allocated memory with either calloc() or malloc() does not get return on its own.
The programmer must use free() explicitly to release space.

syntax of free()

free(ptr);

This statement cause the space in memory pointer by ptr to be deallocated.
Examples of calloc() and malloc()

Write a C program to find sum of n elements entered by user. To perform this program, allocate
memory dynamically using malloc() function.

#include <stdio.h>
#include <stdlib.h>
int main(){
int n,i,*ptr,sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc
if(ptr==NULL)
{
printf("Error! memory not allocated.");
exit(0);
}

printf("Enter elements of array: ");

for(i=0;i<n;++i)

{

scanf("'%d",ptr+i);
sum+=*(ptr+i);
}
printf("Sum=%d",sum);
free(ptr);
return O;

¥

Write a C program to find sum of n elements entered by user. To perform this program,allocate
memory dynamically using calloc()function.

#include <stdio.h>
#include <stdlib.h>
int main(){

int n,i,*ptr,sum=0;

printf("Enter number of elements: ");

scanf("%d",&n);
ptr=(int*)calloc(n,sizeof(int));
if(ptr==NULL)
{
printf("Error! memory not allocated.");
exit(0);
¥
printf("Enter elements of array: ");
for(i=0;i<n;++i)
{

scanf("%d" ptr+i);

sum+=*(ptr+i);
}
printf("Sum=%d",sum);
free(ptr);
return O;
}
realloc()

If the previously allocated memory is insufficient or more than sufficient. Then, you can change
memory size previously allocated using realloc().

Syntax of realloc()
ptr=realloc(ptr,newsize);
Here, ptr is reallocated with size of newsize.
#include <stdio.h>
#include <stdlib.h>
int main(){
int *ptr,i,n1,n2;
printf("Enter size of array: ");
scanf("%d",&nl);

ptr=(int*)malloc(n1*sizeof(int));

printf("Address of previously allocated memory: ");

for(i=0;i<nl;++i)
printf("%u\t",ptr+i);

printf("\nEnter new size of array: ");

scanf("%d",&n2);

ptr=realloc(ptr,n2);

for(i=0;i<n2;++i)

printf("%u\t”,ptr+i);

return O;

UNIT-
IVFILE
S

DRAWBACKS OF TRADITIONAL 1I/0O SYSTEM

Until now we are using Console Oriented 1/O functions.

-Console Applicationimeans an application that hasa text-based interface. (black screen window))
Most applications require a large amount of data , if this data is entered through console then

itwill be quite time consuming task

Main drawback of using Traditional 1/O :- data is temporary(and will not be available during re-

execution)

Pritesh taral
User executes the
programand
outputwill be
displayedonthe
screen

‘ Ordinary way withoutfile

Consider example —
We have written C Program to accept person detail from user and we are going to print these
details back to the screen.

Now consider another scenario, suppose we want to print same data that we have

enteredpreviously.

We cannot save data which was entered on the console before.

Now we are storing data entered (during first run) into text fileand when we need this data back

(during 2nd run), we are going to read file.

Introduction to file handling in C
New way of dealing with data is file handling.

Data is stored onto the disk and can be retrieve whenever require.
Output of the program may be stored onto the disk
In C we have many functions that deals with file handling

A file is a collection of bytes stored on a secondary storage device(generally a disk)

Collection of byte may be interpreted as—
Single character

Single Word

Single Line

Complete Structure.

Using File System

Pritesh taral

User can read data
wheneverrequire.

- . User executes the !_
— programand
output will stored

on file for further
processing

File 1/0 Streams in C Programming Language
In C all input and outputis done with streams

Stream is nothing but the sequence of bytes of data

A sequence of bytes flowing into program is called input stream

A sequence of bytes flowing out of the program is called output stream
Use of Stream make I/0O machine independent.

Predefined Streams :

stdin Standard Input

stdout Standard Output

Standard Input

Standard Error

Text terminal

[Keyboard

#0 stdin

#1 stdout
[Display w

Standard Input Stream Device

stdin stands for (Standard Input)
Keyboard is standard input device.

Standard input is data (Often Text) going into a program.

The program requests data transfers by use of the read operation.
Not all programs require input.

Standard Output Stream Device

stdout stands for (Standard Output)

Screen(Monitor) is standard output device.

Standard output is data (Often Text) going out from a program.
The program sends data to output device by using write operation.

Difference Between Std. Input and Output Stream Devices :

Point Std i/p Stream Device Standard o/p Stream Device

Stands

c Standard Input Standard Output
or

Example | Keyboard Screen/Monitor

Point Std i/p Stream Device

Standard o/p Stream Device

Data Flow

Data (Often Text) going into a
program

data (Often Text) going out from a

program

Operation | Read Operation

Write Operation

Some Important Summary :

Point

Input Stream

Output Stream

Standard Device 1

Keyboard

Screen

Standard Device 2

Scanner

Printer

10 Function

scanf and gets

printf and puts

IO Operation

Read

Write

Data

Data goes from stream

data comes into stream

Text file Format in C Programming
Text Fileis AlsoCalled as-FlatFile—.

Text File Format is Basic File Formatin C Programming.

Text File is simple Sequence of ASCII Characters.

Each Line is Characterized by EOL Character(End of Line).

1000233 Miralda
1000234 Faley
1000235 Bay log
1000236 Ga'llardo

1000237 Christian

1000238 Baufield
1000239 Frazier
1000240 Garrido
1000241 williams
1000242 Morel
Padilla
1000244 rosenber
1000245 Elanchar
1000246 Wi ins
1000247 Mﬁ??er
1000248 Coon
1000249 Chretien
1000250 Myers

1000233 Miralda
10002354 Faley
1000235 Baylog

dohn

M ck
Cathy
mike
Daniel
paniel
robert
Edward
Zachary
Dawvid
Damian
wayne
Fhong =
Dawi
deffrey
Tarry
walter
Timothy

dohn
[l 3
Cathy

Text File Formats

Text File have .txt Extension.

Text File Format have Little contains very little formatting .

The precise definition of the .txt format is not specified, but typicallymatches the
formataccepted by the system terminal or simple text editor.

Files with the .txt extension can easily be read or opened by any program that reads text and, for

that reason, are considered universal (or platform independent).

Text Format Contain Mostly English Characters

What are Binary Files
Binary Files Contain Information Coded Mostly in Binary Format.

Binary Files are difficult to read for human.

Binary Files can be processed by certain applications or processors.
Only Binary File Processors can understood Complex Formattinginformation Stored in
Binary Format.

Humans can read binary files only after processing.
All Executable Files are Binary Files.

, fname, Inam
i 20101 Binary nancy davo

> tony ,rapha

1

Explanation :

As shown in fig. Binary file is stored in Binary Format (in 0/1). This Binary file is difficult to

read for humans. So generally Binary file is given as input to the Binary file Processor. Processor
will convert binary file into equivalent readable file.

Some Examples of the Binary files :

Executable Files

Database files

Before opening the file we must understand the basic concept of file in C Programming,

Typesof File. If we want to display some message on the console from the file then we must
open itin readmode.

Opening and Defining FILE in C Programming

Before storing data onto the secondary storage , firstly we must specify following things —

File name

Data Structure

Perpose / Mode

Very first task in File handling is to open file

File name : Specifies Name of the File
Period

ED- O

t File Extension

Name of the
File

File name consists of two fields
First field is name fieldand second field is of extension
fieldExtension field is optional
Both File name and extension are separated by period or dot.
Data Structure
Data structure of file is defined as FILE in the library of standard 1/O functions
In short we have to declare the pointer variable of type FILE
Mode of FILE opening
In C Programming we can open file in different modes such as reading mode,writing mode and
appending mode depending on purpose of handling file.

Following are the different Opening modes of File :

http://www.c4learn.com/c-programming/c-files-input-output/
http://www.c4learn.com/c-programming/c-text-file-format/
http://www.c4learn.com/c-programming/c-text-file-format/

Opening Previous
Purpose
Mode Data

Reading File will be opened just for reading purpose Retained

Writing File will be opened just for writing purpose Flushed

. File will be opened for appending some thing in)
Appending il Retained
ile

Different Steps to Open File
Step 1 : Declaring FILE pointer

Firstly we need pointer variable which can point to file. below is the syntax fordeclaring the

filepointer.

FILE *fp;

Step 2 : Opening file hello.txt

fp = fopen("filename”,"mode");

LiveExample: OpeningtheFileandDefiningtheFile #include<stdio.h>

int main()

{
FILE *fp;
char ch;

fp = fopen("INPUT.txt","r") // Open file in Read mode
fclose(fp); // Close File after Reading

return(0);

}

If we want to open file in different modethen following syntax will be used —

Reading Mode fp = fopen("hello.txt","r");

Writing Mode fp = fopen("hello.txt","w");

Append Mode fp = fopen("hello.txt","a");

http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/
http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/
http://www.c4learn.com/c-programming/c-file-structure-and-file-pointer/
http://www.c4learn.com/c-programming/c-file-open-modes/

OpeningtheFile: YetAnotherLiveExample #include<stdio.h>

void main()

{
FILE *fp;
char ch;
fp = fopen("INPUT.txt","r"); // Open file in Read mode
while(1)
{
ch = fgetc(fp); // Read a Character
if(ch == EOF) // Check for End of File
break ;
printf("%c",ch);
fclose(fp); // Close File after Reading

File Opening Mode Chart

fopen Returns if FILE-

Mode | Meaning

Exists

Not Exists

Reading

NULL

Writing Over write on EXisting

Create New
File

Append

Create New
File

Reading + New data is written at the beginning

Writing overwriting existing data

Create New
File

Reading +

o Over write on Existing
Writing

Create New
File

Reading + New data is appended at the end of file

Create New

Appending

Explanation :

File can be opened in basic 3 modes : Reading Mode, Writing Mode, Appending Mode

If File is not present on the path specified then New File can be created using Write and
Append Mode.

Generally we used to open following types of file in C —

File Type Extension

C Source File

Text File

Data File

Writing on the file will overwrite previous content

EOF and feof function >> stdio.h >> File Handling in C

Syntax :
int feof(FILE *stream);

What it does?

Macro tests if end-of-file has been reached on a stream.

feof is a macro that tests the given stream for an end-of-file indicator.

Once the indicator is set, read operations on the file return the indicatoruntil rewind is called, or
the file is closed.

The end-of-file indicator is reset with each input operation.

Ways of Detecting End of File

A]In Text File :

Special Character EOF denotes the end of File

As soon as Character is read,End of the File can be detected

169

EOF is defined in stdio.h

Equivalent value of EOF is -1

Printing Value of EOF :

void main()

{

printf("%d", EOF);

}

B] In Binary File :

feof function is used to detect the end of file
It can be used in text file

feof Returns TRUE if end of file is reached
Syntax :

int feof(FILE *fp);

Ways of Writing feof Function:

Way 1 : In if statement :
if(feof(fptr) == 1) // as if(1) is TRUE

printf("End of File");
Way 2 : In While Loop
while(!feof(fptr))

C - Command Line Arguments

main() function of a C program accepts arguments from command line or from other shell
scripts by following commands. They are,

argc
argv[]

where,

argc — Number of arguments in the command line including program name
argv[] — This is carrying all the arguments

In real time application, it will happen to pass arguments to the main program itself. These
arguments are passed to the main () function while executing binary file from command line.

For example, when wecompile a program (test.c), we get executable file in the name —testl.
Now, we run the executable —testl along with 4 arguments in command line like below.
Jtest this is a program

Where,

argc 5

argv[0] —testl
argv[1] = -thisl
argv[2] = —il
argv[3] = =l
argv[4] = —programl
argv[5] = NULL

EXAMPLE PROGRAM FOR ARGC () AND ARGV() FUNCTIONS IN C:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) // command line arguments

{
if(argc!=5)
{

printf("Arguments passed through command line " \

"not equal to 5");

return 1;

printf("\n Program name : %s \n", argv[0]);

printf("1st arg : %s \n", argv[1]);
printf(*2nd arg : %s \n", argv[2]);
printf("3rd arg : %s \n", argv[3]);
printf("4th arg : %s \n", argv[4]);

printf("5th arg : %s \n",argv[5]);

return O;

ks

OUTPUT:

Program name : test
1st arg : this

2nd arg : is
3rdarg:a

4th arg : program
5th arg : (null)

