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B.Tech

(DIGITAL SIGNAL PROCESSING)

OBJECTIVES:

To understand the basic concepts and techniques for processing signals and digital
signal processing fundamentals.

To Understand the processes of analog-to-digital and digital-to-analog conversion and
relation between continuous-time and discrete time signals and systems.

To Master the representation of discrete-time signals in the frequency domain, using z-
transform, discrete Fourier transforms (DFT).

To Understand the implementation of the DFT in terms of the FFT, as well as some of its
applications (computation of convolution sums, spectral analysis).

To learn the basic design and structure of FIR and IIR filters with desired frequency
responses and design digital filters.

The impetus is to introduce a few real-world signal processing applications.

To acquaint in FFT algorithms, Multi-rate signal processing techniques and finite word
length effects.
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1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris
G. Manolakis, Pearson Education / PHI, 2007.
2. Discrete Time Signal Processing — A. V. Oppenheim and R.W. Schaffer, PHI, 2009.
3. Fundamentals of Digital Signal Processing — Loney Ludeman, John Wiley, 2009
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6. Digital Signal Processing - Nagoor Khani, TMG, 2012.

OUTCOMES
On completion of the subject the student must be able to:

e Perform time, frequency and z-transform analysis on signals and systems
e Understand the inter relationship between DFT and various transforms
¢ Understand the significance of various filter structures and effects of rounding errors
* Design a digital filter for a given specification
¢ Understand the fast computation of DFT and Appreciate the FFT processing
Understand the trade-off between normal and multi rate DSP techniques and finite length
word effects



DIGITAL SIGNAL PROCESSING UNIT1

1.1 Basic Concepts of Signal Processing

Figure 1.1.1 describes the concept of analog signal processing. An analog signal (iransducer signal plus
noise) produced by a transducer (sensor) is captured for the real-world application. For example, a
temperature sensor produces a small voltage (10 mV per “C") based on the temperature of environment: a
microphone generales a voltage range from approximaitely 50 mV o 100 mV according to loudness of
voice. To be able to usc the acquired analog signal. two steps usually are involved. First, the small scale
analog signal will be signal conditioned or amplified. we refer this as the time domain processing after
which the amplified signal range [its for applications, for example, the amplified lemperature signal is
feasible to drive the analog device or can be used for the analog io digital conversion (ADC) channel for
further processing application. Similarly, the amplified microphone signal could drive the loudspeaker, or
pass 1o the ADC channel for digital recording. However. during the noisy sensor environment and
amplifving process, signal noise i1s also added to the desired signal such as signal Muetuation in the
temperature signal. or hissing sound in the recorded voice. The noise could be fully or partially removed
by using an analog filter as shown i Figure 1.1.1. We refer this process as the [frequency domain
processing.

Temperalure senser
Transducer signal Amphfied and enhanced signal
I plus noise
i Signal conditionin

N

Figure 1.1.1 Analog signal processing scheme.

Amplified signal plus noise

A major objective of analog signal processing is 1o design a suitable analog filter, which could be
constructed using the clectronic devices based on the charactenistics of the desired signal and noisc. Via
analog signal processing, the enhanced signal is produced,

The concept of digiial sigral processing (DSP) is betier illusirated by a typical simplified block
diagram in Figure 1.1.2, which consists of several blocks such as the analog liller, ADC, digital sisnal
processor, digital 1o analog comverter (DAC), and reconsirnciion filter fanii-image filter),

Analog Band-limited Digatal Processed Output Analog
input signal signal digital signal sigral output
Analog & ke - . | Reconstruction
™ ner # ADC » DSP » DAC * filter —»

Figure 1.1.2 Digital signal processing scheme,

As shown in the block diagram, the analog signal, which 15 continuous both in time and
amplitude, 15 generally encountered in our real hifie. Examples ol such analog signals include current,
voltage. temperature, pressure, and light intensity, Usually a transducer (sensor) with an amplifier is used
to converl a non-gleetrical signal to an analog electrical signal (veltage), This analog signal is then fed o
an analog filicr, where the analog filier performs (iliering o limit the frequency range of the analog signal
prior o the sampling process, The purpose of fillering is to significantly altenuate the aliasing distortion,
which will be explained in Chapler 7, The band-limited signal al the ouipul of the analog filler is then
sampled and converted via an ADC into the digital signal, which is discrete both in time and amplitude.
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The digital signal processor then accepls the digital signal and processes the digital data according to the
digital signal processing rules such as lowpass, highpass, bandpass digital fillers, or other algorithms for
different applications. Notice that the digital signal processor 1s a special type of digital computer, which
could be a pencral-purpose digital compuler, a microprocessor, or an advanced micro-controller;
[urthermore, digital signal processing rules could be implemenied using soltware in general, With the
digital signal processor and corresponding soliware, a processed digital output signal 1s generated. This
signal behaves in a manner according 1o the specific algonthm used. The next block m Figure 1.1.2 15 the
DAC. which converis the processed digital signal (o an output signal. As shown m Figure 1.1.2. the signal
is confinuous in time but discrete in amplitude (usually sample and hold signal). The final block 15
designated as a function to smooth the obtained output signal back 1o the analog signal via a
reconstruction (anti-image) filer for real-world applications,

As we can see, the analog signal processing does not require software, algonthms, ADC, and
DAC, The processing fully relics on the elecincal and clectromic devices such as resisiors, capacitors,
transistors, operational amphibiers, and infegrated circwits (1C). Digital signal processing requires analog
signal processing before the ADC and after the ADC. Since the digital signal processor uses software,
digiial processing. and algorithms, 1t has a great deal of flexibility, less noise mterference, and no signal
distortion in various applications, As shown in Figure 1.1.2, the analog signal processing cannol be
avoided and 15 a must for converting real-world information o a digital form and the digital form back 1o
real world. In next section, we will focus on reviewing some tvpical applications of digital signal
processing,

L2 List of Signal Processing Apphcation Examples

Applications of DSP are incrcasing in many: arcas where analog clectromics are replaced by the digital
signal processors while new applications are depending on the digital signal processors. With the
decreasing cost of the digital signal processors and the increase in its performance, DSP s likely continue
to impact engincering design in our modern daily life, Typical examples using the DSP are listed below:

Digital andio and speech:
Digital avdio coding such as CD players and MP3 plavers
[hgital crossovers and digital audio equahzers
Digital sterco and surround sound
Nosc reduction sysicm
Speech coding
Data compression and encryvplion

Digital telephone:
Speech recogmtion
High-specd modems
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Echo cancellation

Speech synthesizers

TDMF generation and detection
Answering machines

Automobile industry:
Active nmsc control svstem
Active suspension svsicm
Digital audio and radio
Digital control

Elcctronic commumications:
Cellular phones
Dagital teleccommumications
Wireless LAN
Satcllite communications

Medical imaee equipment
ECG analvzers
Cardiac monitoring
Medical image and image recogmilion
Digital X-rays and image processing

Multimedia:
Internet phones, audio, and video
Hard disk drive clectronics
Dngital prcturcs
Digital cameras
Text-to-voice and voice-to-text technologics

However, the list of applications above 1s not meant to cover all signal processing applications, DSP areas
are increasing and being explored by engincers and scientists, More and more DSP techniques are
impacting and will continue to improve our lile,
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DIGITAL SIGNAL PROCESSING UNIT

Classification of discrete-time signals (Along lines sinilar to continuons-time signals)

Discrete-ime Energy and Power signals The energy E of a discrete-tume signal xin) i3
given by
E= lim T 2. x(m)x "(n)

N==
H-—"I'

where x_ is the complex conjugate of x. If xin) 15 a real sequence then x(n) x‘f’nj = ngnj. The
above definition can alse be written as

(there are 2N+1 terms here)

H-—"II
The average pﬂwarPnf the 51@31 is
P=tim —— Shnf
Ne= IN+D

If E 15 finite but non zero (1.e, 0 < E < w) the signal 15 an energy signal. It is a power
signal if E 1s infimite but P 15 finite and nonzero (1e., 0 < P < ). Clearly, when E 13 finite, P= (.
If E 15 infinite P may or may not be fimte.

If nesther E nor P 15 fimte, then the signal 15 netther an energy nor a power signal
PROBLENM: For the 5igna.| xfn)= 1 for all n,

E=lm T|.r|[nj = 1*_1 = % which is infinite energy

ol ey i

":“L () = P = fim 2
N 11~:*1 = = "N +1,5y A== 2N+l

Thus x(n) is a power signal. |
Periodic signal The discrete-time signal xfn) 15 periodic if, for some mteger N> 0

P=lm -1 which 1s finite

xfn+N)=xn) for all n

The smallest value of N that satisfies this relation 15 the (fundamental) period of the signal If
there 15 no such mteger N, then x(n} 15 an apenodic signal

Given that the continnouns-time signal xg¢7) is periodic, that is, xu(f) = xgft+T) for all 1.
and that x/n) 1s obtained by sampling x,(t) at I second intervals, x{n) will be periodic if TpTisa
rational number but not otherwise. If TpT =N/ for integers N = 1 and L = 1 then x{n) has
exactly N samples in L periods of x,(t) and x{n) is peniodic with peniod .

Periodicity of sinusoidal sequences The sinusoidal sequence sin (2afim) has several major
differences from the continuous-time sinusoid as follows:

a) The sinusoid x{n) = sin (2afzn) or sin (wgn) is penodic if fp, that 15, wp/2a. 1s rational. If fj 1s
not rational the sequence is not periodic. Replacing n with (n+N) we get

x(n+N) = sin (2afp(n+NJ) = sin 2xfpn. cos 2xfaN + cos 2xfpn. sin 2xfpN

1



Clearly x(n=N) will be equal to x(n) of filN'=m, an mteger or fj= m/N. The fundamental period 1s
obtained by choosing m as the smallest integer that yields an infeger value for N. For example, if
fo=15/25, which 1 reduced fraction form 15 3/5, then we can choose m = 3 and get N=3 as the
period. If fj 15 rational then f3 = p/g where p and g are integers. If p/g 15 in reduced fraction form
then g 15 the period as in the above example.

On the other hand 1f f; 15 irrational, say fy = J2 . then N will not be an mnteger, and thus
x(n) 15 aperiodic.

The sum of two discrete-time periodic sequences 15 also periodic. Let x(n) be the sum of two
periodic sequences, x(n) and x2(n), with periods N and N respectively. Let p and g be two
mtegers such that

pNi=gN:=N (p and g can always be found)
Then x{n) is periodic with period N since, for all n,
x(m+N)=xi(n+N) + x2(n+N)
= xi(n+pN1) + x2(n+gN2)
=xj(n) + x2fn)

=x(n) forall n

Odd and even sequences The signal x(n) 1s an even sequence if x(n) = x(—n) for all n, and 15 an
odd sequence if x{n) = —x(-n) for all n.

x(n) (Even) + xfn) (Odd)

The even part of x(n) is determined as xgfh) = wﬂﬂd the odd part of xfn) 15 grven by

M_ The signal x(n) then 1s given by x{n) = xXe(n)+xafn).

Xpn) = 5



ELEMENTARY DISCRETE TIME SIGNALS:

1) The unit sample sequence (discrete-time impulse, aka Kronecker delta)

éf’n}={1, n=0
0. nz0

Whereas &(n) is somewhat similar to the continuous-time impulse function &t} — the
Dirac delta — we note that the magnitude of the discrete impulse 15 finite. Thus there are no
analytical difficulties in defining &{n). It is convenient to interpret the delta fonction as follows:

Slargument) = | 1 when argument =0
0 when argument =0

4(n) s(n—k)
1 J 1
n o > N
-1 0 1 -1 0 1 — k
1) The unit step sequence

up)=J1, nz0
W M n w ']

uargument) = | 1, if argument > 0

0, if argument < 0

ufn) ufin—k}
1 1

a) The discrete delta fonction can be expressed as the first difference of the vwnit step fonction:
i) =ufn) —ufn-1)

b) The sum from —o to n of the & function gives the unit-step:



= [0ifa<0]

S (k)= - ufn)
= |1 220
Sum up to bere 13 zero
. > k
i 0
.I | = k
0 "

Sum up to here is 1
Feesunlts (a) and (b) are like the continmouns-time derivative and integral respectively.
c) By inspection of the graph of ujn), shown below, we can write:
un)=dam) +ém-l)+sm-2)+ .. = i dn—A4)

A=10

uim)
&) &fn=l}) aim—2) Sfn—=3)

= F

0 1 2 3
d) For any arbitrary sequence x(n). we have

x(n) éfn=k) =x(k) é(n—k)

that 1s. the mmltiplication will pick out just the one value x(k).
If we find the infinite sum of the above we get the sifting property:

ix{n} Si{n — k)= x(k)

B —-—

xfF)
x(k)




4 Sin—k)

> —0

* n
0
4 x(k) Sim—k)
x(k) din—k)
* n
0 k

&) We can write x(n) as follows:

xfn)= .+ x=I)ofn=1)+xi0) sm) + x(1) afn-I) + xi2} ain-2)+ ...
This can be verified to be frue for all 7 by sefting in fn

vee==2_ n=-1.n=0.n=1.n=2 etc. ..

The above can be written compactly as
xfp= > x(k)d(n-k)

o o-—

This is a weighted-som of delayed pmit sample functions.

3) The real exponential sequence Ceonsider the familiar continuons time signal

xft)=¢ =", t20
The sampled version 1s given by setting t=nT
xml)=e =™ [, nlz0
Dropping the T from x(nT) and setting &' = a we can write
xfmj=a", nzl

The sequence can also be defined for both positive and negative n, by simply writing x/n) = "
foralln.



x(th =™, =0

xfn)= ar ufm)
a=g™""
T .
] 3 4

4) The sinuscidal sequence Consider the continnons-time smusoid xi#)

¥
£

=]
o
-2
%}
b
in
(=1

x(t)= A sin 2zFut = 4 sin Qgt

Fpand Qpare the analog frequency in Hertz (or cycles per second) and radians per second,
respectively. The sampled version is given by

x(nI) =4 sm 2xFgpT= A sin LgnT
We may drop the T from x(nT) and write
xfn) =4 sin 2aFgnT = 4 sin OpnT _ for all n
We may write £2pT = oy which 15 the digital frequency i radians (per sample), so that

xfn) =4 sin wgn =A sin 2afgn, for all n

Setting eag = 2xfy gives f= ey 2r which 15 the digital frequency in cyeles per sample. In the
analog domain the horizontal axis 15 calibrated n seconds; “second” is one wait of the
independent vaniable. so @ and Fp are 1 “per second”. In the digital domain the horizontal axis
15 calibrated 1 samples; “sample” 15 one umt of the independent variable, so wy and fj are 1n “per
sample”.



Discrete-time systems

Definition A discrefe-fime system 1s a mapping from the set of acceptable discrete-time signals,
called the input set. to a set of discrete-time signals called the cutput set.

Definition A discrete-time system is deferminisfic if its outpot to a given input does not depend
upon seme random phenomenen. If it does, the system is called a randem (stochastic) system.

Definition A digital system 13 a mapping which assigns a digital output signal to every
acceptable digital input signal.

A discrete-time system can be thought of as a transformation or operator, T, that maps an
mput sequence x(n) to an cutput sequence i) shown thus:

x(in) N EUR 0

In what follows we focus on the presence or absence of the following properties in
discrete-time systems: inearity, shift invariance, cavsality and stability.

Filter Some refer to a linear time-invariant (LTT) system simply as a filter, that 1s, a filteris a
system T with a single input and a single output signal that is both linear and time-invariant.

Linearity

Definition A discrete-time system JIT.] 1s linear if the response to a weighted sum of inputs x1/n)
and xn) is a weighted sum (with the same weights) of the responses of the inputs separately for
all weights and all acceptable inputs. Thus the system i) = Txn)] 15 linear if for all a). az,
xpfn) and xzih) we have

Tapxyn)+apafn] = aiTlxi(n)] + a:ITxzfnj]
Another way of saying this is that if the mputs x1(h) and x2(n) produce the outputs yi(n)
and y;(n), respectively, then the input a;x;(n) + azfn) produces the output ay y;fn) + azyam).
Thus 15 called the superposition principle. The aj, az. x;fn) and x3(n) may be complex-valued.
The above definition combines two properties, viz.,

1. Additivity, that 1s. T[x;n)}+xam)] = TTxim)] + Txzm)], and
2. Scaling (or homogeneity), that 15, ITe xfn)] = ¢ Txfn)]

The procedure of checking for linearity 1s:
1. Fmnd outputs yyfn) and y;(n) corresponding to mputs x)(n) and x;(n)
2. Form the sum ajy;fn) + a;yan)
3. Fmnd output y3in) corresponding to mput apxyin) + ag;in)
4. Compare the results of steps 2 and 3



Examples of linear systems:

1. ym) =xn) +xfp=1) + xin=2)

2. yin)=ypn=1) + x(n)

3oymp=0

4 ym)=nxmn) (But time-varying)
Examples of nonlinear systems:

L ym)= x:fnj

2. win) = 2 xim)=3. This is a linear equation though! This system is made vp of a
linear part, 2 x(n), and a zero-input response, 3. This is called an incrementally
linear system, for it responds linearly to changes in the input.

Example Determine if the svstem win) = ITx(n)] = x/=n) is linear or nonlinear.

xin) yin) = ITx(n)] = x(-n)

Answer Determine the outputs v ) and (. ) corresponding to the two input sequences x(k) and
xzfn) and form the weighted sum of cutputs:

1) = Txpind] = xp—nl
o(m) = I[xznl] = x2—n)

The weighted sum of outputs = a; xp—n) + az xz2i—n) — (A).
Next determune the output vz due to a weighted sum of inputs:

yim)= Tarxim) + azxafn)] = a; x3f=n) + az xzf-n) — (B)

Check if (A) and (B) are equal. In thiz case (A) and (B) are equal; hence the system is

Linear.
Example Examine yin) = T[xn)] = xin) + n xyn+1) for inearity.
xfmn) vin}=T[xin)] =xm) + nxm+1)
" TLI >

Answer The outputs due to x)fh) and x2(h) are:

yimp = ITxpm)] = xpin) + nxyn=1)
y2(n) = I[xz(n)] = x2(n) + n xz(n+1)

The weighted sum of outputs = a;x;in) + aynxym+1) + a; xzn) + aynxyn+i) — (A)
The cutput due to a weighted sum of inpuots i3

yarmp = Tlaxim) + azxzmn)]
=ayxpn) +azxzm) +n fayxym+1) + azxam+I)
=aixifn) +azrxxn) +naixyn=1) +narxxm+1)— (B)

Since (A) and (B) are equal the system is linear.



Example Check the system yin) = I[xin)] =n 0 gop linearity.

xfn) yin) = Ix(n)] =n gl
" 1]
Answer The outputs due xpfn) and xR} are:
i) = Tlxsfnj]= n &)
yafn) = Tlxafm)] = ne"
The weighted sum of the outpuis = a;n el C 4 gy p el — {A)
The output due to a weighted sum of inputs is

¥am)=Ia)yxin) + a;xzm)] =n el'}' s +an) _, (B)

We can specify aj, az, x3/n), xz(n) such that (A) and (B) are not equal. Hence nonlinear.

Example Check the system y(n) = T[xin)] = a" cos(2m/N) for linearity.

x(n) vin)=a" cos (2an/N)
— ] [—

Answer Mote that the input 15 xfn). Clearly yin) 13 independent of xjn). The outputs due to x;fm)
and x(n) are:

yifn)=Tlxsfmj] = a” cos (2anN)
yafn) = T[xzfn)] = a" cos (2anN)

The weighted sum of the outputs = by a" cos (2anN) + by a” cos (2anN) — (A)
The ocutput due to a weighted sum of inputs 1s
ysin) = T[byx;fn) + byxzm)] =a" cos (2aN) — (B)
(A) and (B) are not equal. so the system is not linear. (But (A) = (b;+by) a" cos (2an/N) and this is
equal to (B) within a constant scaling factor.)

Example Check the system y(n) = ITx(n}] = n xin) for lineanity.
x(m) ¥(m) =nxin)

—s 1] —

Answer For the two arbitrary inputs x;(n) and x,(n) the outputs are
vi(n) = T[x1(a)] = nx1(z)
~ ¥2n) =T[x2(n)] = nxn) _
For the weighted sum of inputs a) xj(n) + a3 x3(n) the outpuot 15
y3(m) = T[a1 x1(n) + a3 xa(n)]= 0 (a1 x1(n) + axxa(n))
=a;n x;{n) +a; 0 xx(n)
= aj y1{) + a3 ya(n). Hence the system is hinear.



Shift-invariance (time-invariance)

Definition A discrete time system yin) = I[x(n)] 15 shuft-wnvanant if, for all x/n) and all ny, we
have: TTxfn-ng)] = yin—ny).

This means that applying a time delay (or advance) to the input of a system is equivalent
to applying it to the cutput.

x(n) y(n) = Tfx(n)]

The procedure for determining shift-

INVANance i%:

Step 1. Determine output yin) corresponding to input x{n).

Step 2. Delay the owtput yin) by ng units, resulting in yin—ng).

Step 3. Determine output vin, ng) cotresponding to input x(n—mng).

Step 4. Determine if vn, ng) =yin—ngl. Ifequal, then the system is shift-invariant;
otherwise it is time-varying.

When we suspect that the system is time-varying a very useful alternative approach is to
find a counter-example to disprove time-invariance, 1.e., use intuiticn to find an input signal for
which the condition of shifi-invaniance 15 viclated and that suffices to show that a system 1s not
shift-invariant.

Example Test 1if yin) = ITx(n)] = x{—n) 15 shift-mvariant.

) y(n) = x(-n}
—

X, g

Answer Find output for x(n), delay it by ny, and compare with the output for x(n-ng). The output
for x(n) is

(@) = Tixt)] = 5(0)
Delaying y(a) by g gives
y{an) = x({o-0)) = x(-r+a) — (A)

As an aside this amounts to reflecting first and then slufting.
The output for x(n—np) is denoted y(n, no) and is given by



¥i{n. ng) = T[x(n—ny)] = x(-0—0g) — (B)

As an aside this amounts fo slufting first and then reflecting.
(A) and (B) are not equal. That is, w{n, ny) = v{n—ng), so the system is time-varying.

Example Examine yw(n) = Tx{n)] = x(n) + o x(n+1) for time nvariance.
Answer Notice that the difference equation has a time-varying coefficient, n. The output o)
corresponding to x(n) is already given above. Delaying vin) by oy gives

¥{o—ng) = x(o—ng) + (o—ng) x(o—ng+1) — (A)

Compare with y(n. ng) = T[x({n-np)] = x(n—ng) + n x(n—ny+1) — (B)

{A) =(B), so the system 15 fime varying.

Example Check for time mvariance of the system y{n) = T[x{n)] = o x{n).
Answer We shall do this by counterexample(s) as well as by the formal procedure. The formal
procedure is:

y(n) = I[xfn)] = n x(m)
Delay this by ng to get y{n—ng) = (o—np) x(n—np) — (A)
Compare with y{n, ng) = T[x(n—mp)] = n x(n—ng) — (B)

Since (A) = (B), the system is time-varying.
Convolution

An arbitrary sequence, x(n), can be written as the weighted sum of delayed vnit sample
fonctions:
xin) = = x=2) ém+2) = x=1) sin+1) = xi0) &din) = x(1) sin—=1) +_..

= > x(k)é(n—k)
& - ——
So the response of a linear system to input x{n) can be wnitten down using the hneanty
principle. 1.e_, linear superposition. For a linear shift-invariant system whose impulse response is
T[&(n)] = hin) the reasoning goes like this

# Foran input &in) the output is hin). For an input x{0) &(n) the output is x{0) hin)
by viriee of scaling.

+ For an input é(n—I) the output 1s hfn—1) by virtue of shift-invaniance. For an input
x(1) é(n—1) the output is xy1) hin—1) by virtue of scaling.

* Therefore for an input of x(0) &(n) + x(1) &{n—I ) the output 15 x(0) hin) + x(1) hin—
1) by virtee of additivity.



This reasoning can be extended to cover all the terms that malke up x(n). In general the
response to x(k) sfn—k) is given by xyk) hink).

a(n) LSI System T[ém)] = hin)

T[] *

xfn} 15T S'_'r'StE'ﬂl T[Ifﬂ}] =.]‘:'|Ilﬂ.z‘l
T[] ’

Given that

hin) = T[4(n)]. and  xf)= 3 x(k)d(n—k)

& -m—=

we have

yin)=Txm)]=T | i x(k)S(n—k)

_.l; -—

Since TT.] is linear we can apply linearity a countable infinite number of times to write
yin) = TT[x[k )yé(n—k)| = T x(B)T[é(n— k)]

- —
In above equation since the system is 5hjﬂ-m'l.ra.ﬂaﬂt we write T[3(n—k)] = hyn—Fk). Else write
hefn) or hfn, k) i place of hin—k). Thus for a inear shifi-invariant system

yip= 3 x(k)h(n—k)

& ——

Wote that if the system is not specified to be shift-invariant we would leave the above
result in the form

yin)= > x(k)h(n,k) or yin)= 3 x(k)h,(n)
i Fe—=
Then if shift-invanance is invoked we replace hyn, k) with hifn—Fk).

As in the case of continuous-time systems, the impulse response, hin), is determined
assumning that the system has no initial energy; otherwise the linearity property does not hold, so
that y(n). as determined nsing the above equation, corresponds to only the forced response of the
system.

The sum > x(k)h(n.k) is called the convolution sum, and is denoted x(n) * hyn).

K ——
A discrefe-time linear shift-invariant system is completely characterized by its unit
sample response hin).

Theorem If a discrete-time system linear shift-invariant, T[.], has the unit sample response
T[&fn)] = hin) then the um'put yin) u:nmespnﬂdmg to any input xh) is given by

yin)= Tr(k}h{n k)= Tx{n k) h(k)

kom - kom—=

=x(n) * hin) = h{n) * x(n)



The second summation 15 obtained by setting m = n—k; then for k=— we have m =+, and for
k=« we have m =—x. Thus

ix[kj hin-k)= Ex[n—mjh{m} = ix[n—k} h{k)

o -—— - b m—=

- —

m 15 3 duroy vanzble. The order of ummzhion
(forward or backward) makes no difference.
Hence change m to k and switch hnmts

Example [Linear Convolution] Given the mput {xin)} ={1. 2, 3, 1} and the unit sample
response {hin)} = {4, 3, 2, 1} find the response y(n) =xfn) * hin).
Answer Since x(k) =0 for k< 0 and h{n — k) = 0 for k > n, the convelution sum becomes

yin) = Z:{k}h n—k)= "Tx{kthn -k
Lm== E
Now y(n) can be evaluated for x'miﬂus values of n; for example, setting n = 0 grves y(0). See
table below. The product terms shown m bold ifalics need not be caleulated; they are zero
because the signal values mvelved are zero.

Linear Convolution of {x(n)} ={1. 2, 3, 1} and {hi{n)} = {4, 3, 2, 1}
v(n) = 5 > x(k)hin—k)

it
n=10 u = x=(0) hi0)
y(0) =2 x(kF)h(0—k) | —1 3-4
e
n=1 ! =x(0) b1} + =(1) h(0)
}113=Zcx{ﬁ'3htl—kl =1.3+2 4=11
n=2 E =x=(0) h(2) +x(1) h{1) + x(2) h{0)
319?:2}1{’*”'{2—*} =1.2+2.3+3.4=20
-
n=3 3 ==(0) b{3) + =(1) b(2) + =(2) b{1) + =(3) h(0
¥(3) =2 x(k)h(3 - k) =1_?{+E1].2+3}.3(—]1.4=)1(s} RO
=
n=4 ‘ =x(0) hy4) +=(1) h(3) + =(2) h{2) + x(3) h{1) + x4 h(0)
314)=§ﬂk}ﬁ{4—k} =1.0+2.1+3.2+1.3+0.4=11
-
n=73 L] =x(0) 5} +xi1) b d) + =(2) B(3) + =(3) b(2) + x(4) hil)
y(5)= 2> x(k) h(5— k) +x(5) h0)
k=t =3 1+1.2=5
n=_6 E =x(0) (6} +x(1) hi5) +x(2) hed} + =x(3) h(3) + x(4) h(2)
¥(6) =ch_r(H h{6—k) +x(5) h(l) +x(6) hid)
- =1.1=1
n=7 _ 7 _ =x(0) by 7) +x(1) hfd) +x(2) hi 5} +x03) b} +x04) hi2)
y(TM= ZCI{’*’J h(7—k) +x(5) hi2) + x(6) h(l) +x(7) hiD)
£ =0
yin)=0forn<0andn =6




Causality

The constraints of linearity and time-invariance define a class of systems that is represented by
the convolution sum. The additional constraints of stability and cansality define a more restncted

class of linear time-invariant systems of practical importance.

Definition A discrete-time system is causal if the output at n = ny depends only on the input for
n=ng

The word “causal” has to do with cause and effect; in other words, for the system to act
up there nmst be an actual canse. A cansal system does not anticipate future values of the input
but only responds to actual. present, input. As a result, if two inputs to a cansal system are
identical up to some point in fime ny the corresponding outputs must also be equal up to this
same time_ The synonyms of “causal” are “(physically) realizable™ and “non-anticipatory™.

We digress below to introduce memory-less versus dynamic systems and then resume
with cansality.

Systems with and without memery A system is said to be memory-less or stafic if its
output for each value of n 15 dependent only on the input at that same time but not on past or

[future mputs.
Examples of static systems

1. yim)=xfn) — the identity system
2. yfm)=axin) —x‘)fnj
3. Aresistor Rt wit) =Rxit) (y(t) s voltage and x{1) 15 current)

In many physical systems, memory 15 directly associated with storage of energy. A
resistor has no storage of energy. But a circuit with capacitors and/or inductors has storage of
energy and is a dynamic system, 1.e., has memory. However, while storage of energy has to do
with past inputs only, a static system 13 independent not only of past but also of fifure inputs.

Examples of systems with memory, Le, dynamic systems:

1. yfn)= > x(k). This is an accumulator or summer. The output y(n) depends on
ko -
values of x’) prior to n such as xfn—1) etc.
2. yfn) =x{n=1). This is a delay element.

3. A capacitor C: yft) = % [Jn[r}dr . (¥ ) 15 voltage and x{_) is current).

Getting back to causality, all memory-less systems are causal since the output responds
only to the current value of the input. In addition, some dynamic systems (such as the three listed
above) are also causal

An example of a noncansal system is y(n) = xfn) + xfn+1) since the output depends on a
future value, xfn+1).



Although cansal systems are of great importance, they are not the only systems that are of

practical importance. For example, cansality 15 not often an essenfial constraint m applications 1

which the independent variable is not fime, such as i image processing. Moreover, n processing

data that have been recorded previously (non real-time), as often happens with speech,

geophysical. or meteorological signals, to name a few, we are by no means constrained to causal
processing. As another example, in many applications, including hisforical stock market analysis
and demographic studies, we may be interested in determining a slowly varying trend in data that
also contain higher frequency fluctmations about that trend. In this case, a commeoenly used

approach 1s to average data over an interval in order to smooth out the fluctuations and keep only
the trend. An example of such a noncaunsal averaging system is

1 M
' = k
Y= Ef( )

Definition A discrete-time sequence x(n) 15 called causal if it has zero values for n <0, 1e., xjn)
=0 forn=0.

Theorem A lingar shift-invariant system with impulse response hin) 1s cavsal if and only if hin)
15 zero forn < 0.

Proof By convolution the output yin) 15 given by
yin)= 3 x(k)h(n-Fk)

& om—z

Ifhin)=01forn <0, then hin—k)=0fornk<0crk>n Seo
yin)= i:r[kj hin-k) + ir{k} hin—k)
]

-— kmn+l

s

=0

= > x(k)h{n-k)
kom -
Thus yfn) at any time n 15 a weighted sum of the values of the input x(k) for k = n, that 15, only
the present and past inputs. Therefore, the system 1s cansal.

Bounded input bounded output stability

Definition A sequence xn) is bounded if there exists a finite M such that [x/n)| < M for all n.
(Mote that, as expressed here, M 15 a bound for negative values of x{) as well. Another way of
wrting this 15 —M < x(n) < M)

As an example, the sequence x(n) = [1+cos 3mm] u(n) is bovnded with [x/n)| = 2. The

(1+n)sin10n |

sequence xin) = |: 1+ (08)° |u(n) 1s unbounded.



Definition A discrete-time system 13 bounded mput-bounded ontput (BIBO) stable if every
bounded input sequence x(n) produces a bounded output sequence. That is, if [x(n)| £ M < =, then
vin)| 2L <.

BIBO stability theorem A linear shift imvariant system with impulse response hin) 13 bounded
input-bounded output stable if and only if 5. defined below, 15 finite.

S§= i|h{k}| < w

i.e., the unit sample response 15 absolutely summable.
Proof (Given a system with impulze response hfn), let xfn) be such that |xfn)| =
M. Then the output yn) is given by the convelution sum:

yip= 3 h{k)x(n-k)

k-—=

30 that

i) =

i h(k) x(n - k){

- -

Using the triangular inequality that the sum of the magnitudes = the magmitude of the sum, we
get

) = 3 |r(k)x(n— k)|
b om—
Using the fact that the mapgnitude of a product 1s the product of the magmitudes,
i) = 3 |h(k)||x(n = k)|

o - —

<M T |he)

- —

Thus, a sufficient condition for the system to be stable is that the vt sample response mmst be
absolutely summable; that is,

> Jhck)

& - —

Example Evaluate the stability of the hoear shift-invanant system with the vnit sample
response ki) =a" ufn).
Answer Evaluate

5= Yluw|= Tltute|= Tla‘|= Xd
i == == kb =g
Here we have used the fact that the magnitude of a product (ja"]) is the product of the magnitudes
{inil'). The summation on the right converges if la| < 1 so that § is finite,

1
1

and the system 15 BIBO stable.

s =]




Fourier analysis of discrete-time signals and systems

Note For the discrete-time Fourter transform some anthors (Oppenhetm & Schafer. for instance)
use the symbol Xj&™) while others (Proakis, for instance) nse the symbol Xje ). The symbol e is
used for digital frequency (radians per sample or just radians) and the symbol @ for the analog
frequency (radians/sec). Some authors, on the other hand, vse just the cpposite of owr
convention. that is, o for the analog frequency (radians/sec) and &2 for the digital frequency
(radians).

Discrete-time Fourier transform (DTFT) For the continnons-time signal xt), the Fourier
transform 1s

Fix(t)} = X(2) = j x(t) e dt

The impulse-frain sampled version, x.(1). is given by
Xft) = x(t) 2 S(t—nT)

P —-—

So the Fourier transform of x,4t) is given by

(@)= [x0F ™t = [|x0) To-nT) | ar

— = —_,'ﬂﬂ]'
= > x(nT)e

o

where the last step follows from the sifting propetty of the & functiocn Feplace QT by o the

discrete-time frequency variable, that is. the digital frequency. Note that £ has units of

radians/second, and & has wnits of radians (/sample). This change of notation gives the discrete-

time Fourier transform, X ). of the discrete-time signal x(n), obtained by sampling xt), as
Xfea) = Fixin)y = > x(m)e™™

MNote that this defines the discrete-time Fourier transforms of any discrete-time signal x(n). The

transform exists if x{n) satisfies a relation of the type

Sho<e o Tf<e

These conditions are sufficient to guarantee that the sequence has a discrete-time Founer
transform. As in the case of continnous-time signals there are signals that neither are absolutely
summable nor have fimte energy, but still have a discrete-tume Fourter transform.

Discrete-time Fourier transform of (non-periodic) sequences The Fourer transform of a
general discrete-time sequence tells us what the frequency content of that signal 15

Definition The Fourier transform Y] r’e".”} of the sequence xfn) 15 given by
Flxi} =X(w)= Tx(m)e’™  —(A)

L]

The inverse Fourier transform 13 given by



FH{Xfw)} =xin) =_}L [I{e"“’je*r"“dm — (B)
Equations (A) and (B) are called the Fourier transform pair for a sequence xin) with e
thought of as the frequency content of the sequence xfn). Equation (A) is the analysis equation
and equation (B) 15 the synthesis equation. Since Xjta) 1s a peniodic function of o, we can fhink
of x{n) as the Founier coefficients in the Fourer senies representation of X{e). That is, equation
(A), m fact, expresses Xjw) in the form of a Fourier senes.

Example For the exponential sequence xin) = a” ufhn),
al < 1, the DTFT is

: = — 1 1
X e =Ta"" E—_,I'E‘.H =T'|{IIE_"':' r' = =
@) o pr l-ae™ 1-alcose— jsnw)
We shall put this in the form Xjo)=Magnitude {X} /™" =| ¥(o)| &' from which the
magnifude and phase will be extracted. The denonunator (Dr) 13

_ _ _ jm_.flu'.in.r:r b
Dr.= 1-acos o+ jasinm = “I[{l—amﬁ @y +a'sin @ e o
Thus
_ 2 () _ 1 _Jm-ll. ]j:;::l}
Xfw) = | Xfe)| & = € - -
1.Jr[1 +a” —2acos @)
The magnitude and phase are:
Xfe)| = ! and (@)= —tan”| |
Jﬂ—a‘—!acns 67) 1-acose

Plots of | X] and ~X are shown Note that Yfe) 15 periodic and that the magmiunde 15 an even
function of @ and the phase 15 an odd function. (See below on the notation Y] and 22X ).

The value of X{&'”) at w=01is
1 1

‘11- v — —
| Em'mﬂ quI:1+ﬂ:—2ﬂCDS|]} 1-a
. aqf asm0 |
L¥(w) _, = -ta”] =0
- 1-acos0)

Stmilarly, at & = 7we have |.Y|[ ra}|m= 1/(1+a) and LY Ef-J)Lm_Jr =0.



Frequency response of discrete-time system

For a linear shift-invariant system with impulse response hin), the Fourier transform Hiw) gives
the frequency response. Consider the input sequence x(n)= &'*" for—c <n < =, ie acomplex
exponential of radian frequency o and magnimde 1, applied to a linear shuft-mvanant system
whose unit sample response 15 hjn). Using convolution we obtam the output yin) as
yin)=hin)*xfn)= 3 h(k)x(n-k)= F h(k)e’ ™= &"" 3 h(k)e™

=z fm—= L -

L —
Hie)

=H{w)e'""

Thus we see that Hiw) describes the change in complex amplitude of a complex exponential as a
fonction of frequency. The quantity Hye) 15 called the frequency response of the system. In

general, Hjw) 15 complex valued and may be expressed either in the Cartesian form or the polar
from as

Hyea) = Hpfea) +j Hyfeo) o1 Hiw) = H(w) &'
where Hy and Hj are the real part and imaginary part respectively. H(w)is loosely called the
magnitude and /H () is loosely called the phase. Strictly speaking, H{w)is called the zero-
phase frequency response; note that H (2} 15 real valued but may be positive or negative. We
may use the symbol |Hfe)| for the magnitude which is strictly non-negative. If H{w)is positive
then

Magnitude =|H ()| = H(w) &  Phase=<Ha)
If H{w)is negative then

Magnitude = |[H(o)|=|H(@)|=- H(@) &  Phase=LH(0)=x
We shall often loosely use the 5j,mb-01|H {.:'-J]{ to refer to H(w) as well with the understanding

that when the latter is negative we shall take its absolute value (the magnitude) and accordingly
adjust /H(g) by=xx

Example [Moving average filter] The impulse response of the LTI system
x(in)+x(n-1+x(n-2)
3

yin) =
15

0, otherwize

hin) ={ /3, n=0,12



& hin)=(1/3)ufn) —un-3)]

B T T
| R »

* 7l
0 1 2 3

The frequency response 15 obtained below.

Hfm}: Eh(k:la?_'rm = E_ﬂ"'3}€_"m = ;_l:ﬂ_—jw[l _E-_,'Ell_g—_,'y: :I
& m— b
—jm ) —Ja [af® o omie )
_ 8 (e igigte)= B |1+2€- el _ (1+2cosw) e
3 3 | 2 3

which 15 already in the polar form H{aw)== |H|[m:l| e’ H@ 5o that
|H(@)] = 1+2c0s)/3  and LH(w)=-w
The zero crossings of the magnimde plot ocowr where |H|{'.:'.:-}| =(1+2cosa)/3 =000 @

= cos (-1/2)=2a3= 120%. A frequency of @ = 243 rad./sample (= 1/3 cycle/sample) is

totally stopped (filtered out) by the filter. The comresponding digital signal is x5(n) = cos

2m(1/3)n. The underlying continnouns-time signal, x5(t). depends on the sampling frequency. If,
for example, the samplmg frequency 15 16Hz, then x5(1) = cos 2x({16/3)t, and a frequency of 16/3
Hz will be totally filtered out. If the sampling frequency 15 150Hz, then x5(f) = cos 2a(130/3)z,
and a frequency of 50 Hz will be eliminated.

In calibrating the honzontal axis in terms of the cyelic frequency, F, we use the relation
= QT =2zFT = 2zF/F; from which the point @ = 27 corresponds to F=F,.

4 |H|=(1+2 cosm)/3

| | | | o




3

LH fea)=—mw

gt 8

|

L

o



4.11 Realization of digital filters

Given Hjz), the system function, or A(n), the impulse response. the difference equation may be
obtatned. This difference equation could be implemented by compurer program, special purpose
digital circuifry, or special programmable integrated circuit. This direct evaluation of the
difference equation is not the only possible realization of the digital filter. Alternative
realizations of the digital filter are possible by breaking up the direct realization tn some form.

Direct Form realization of IIR filters An important class of linear shift invariant systems can
be characterized by the following rational system function (where XiZ) is the input, ¥iz) the
output and we have taken ap= 1 in comparison with the earlier representation):

bz
_YE) _by+bz +b, 7 +b, 2™ E
—N41 N N
X(z) 1+EJ'1.: Foreeeenns +aAyaZ +ayZ 1+Zﬂk1—_‘t

k=1

By cross multiplying and ’ra]mlg the i mve:rse -fransform we get the difference equation
yin) = z a,y(n—F)+ zb x(n—7)

=—q; y(n-1) —a; }(H—E,J —... —ayy(n=N)
+bgxin) +byx(n=1) = . + byxin-M)

To construct a filter structure we shall need three tvpes of block diagram elements: a delay
element, a multiplier and an adder, illustrated below:

yin) =) ,w’ n—1) yin=1) : ayym-1) x(n)
—W £
Yiz) 7" Ifr':a 1Y) a7 Y X

:ﬁm x(n)+ apy(n-1)
Yiz)=Xiz)+az Irf’

a;ym-1)

ai E'IIT:}

We can construct a realization of the filter called the Direct Form I by starting with y(n) and
generating all the delayed versions yin—I), yin—2), ..., yin-N),; similarly starting with x{n) and
generating all the delayed versions x(n—!), xfn—2), ..., xin-M). We then multiply the above terms
by the respective coefficients and add them up. This 15 shown below (next page).

This is an N order system NV being the order of the difference equation. There 1s no
restriction as to whether M should be less than or greater than or equal fo V. The total number of
delay elements = (N+M). It 15 not mn canonic form because it uses more than the minimum

possible number of delay elements. It is called “Direct Form™ because the multipliers are the
actual filter coefficients {ay, az ..., ay by by, B2, .., Bug}.



The difference f:qﬁatimi of this realization {or sﬁ‘m:h;rej confinues to be

vin)=—a; yin-1)—a; yim-2) —... —axyn-N)
— —— o

N multiplications

=byxin) = byxin-1) + ... + byyx(n-M)
S - —_

g

{M+1) multiplications

and will be referred fo as the Direct Form [ difference equation. The total number of
multiplications can be counted and is seen to be (N+M=+I). We can also count and see that there
are (N+M) additions. Finally, to calculate the value yfn) we need to store N past values of y(.).
and M past values of x(_), that 15, a total of (N+1) storage locations (storage for the present value
of x{_) 1s not counted).

Direct Form I

Pick-off

point Multiplier

X bgxin)

x(mn—1)

x(m=2)

M™ delay
element
xfn-=A)
Bagxin—M) —ayy(n-N) \
Multiplier

Bearrangement of Direct Form I The above diagram of Direct Form [, or the corresponding
expression for Hz), is sometimes rearranged as below. This shows visually that the transfer



function Hyz) is arranged as a cascade of an all-zero system, H;(z). followed by an ail-pole
system, Hi(z):

_ Fig A 2 1
H{:}- [Z ] = Hy(z) Hif2)
- 1+ Z :'il'k_
3 £ - J '\_Y_/
Hyz) Hifz)

The overall block diagram then 1s shown thus:

Xz) Wiz) Yiz)

— Hiz) Hiz) L .

Wiz

X(z }
taking the inverse z-transform, we get the difference equation below:

i
The all-zero system is Hyz) = LZE} ] from which, by cross-multiplying and

M i
Wiz) = Haz) Xz} =XFEJ{ZE? :-'*]
k=i

win) = bpx(n) - by x(n-1) + .. + by x(n-M)

Xiz) Wiz

—_— Hxz) Y

e _ 1

The all-pole system 15 Hyz) = T
@ (14 z a,z

from which. by cross-multiplying

and taking the inverse z-transform. we get I]]E difference Bquanﬂn as below:

i A

1

l+Zaﬁ

yim)=win)—a; yin-1)— a; yin=2)—_.. —ayyn-N)

¥iz) = Hiyfz) Wiz) = Wiz)



Wiz) Yiz)

—»  Hiz) -

Even though it seems that there are two equations. one for win) and another for y/n). there 1s, in
effect, onlv one since win) in the second equation is simply a short hand notation for the first
equation and can be eliminated from the equation for y(n).

Overall, the Direct Form I has the following alternative appearance:

¢ % )
xin) win) yin
ﬂ>—» € f————
NS
1 -1
z by z
* o >— \T"
g E“\I
} D \I,/
i b ;
! '“\‘
>
7! b
e p i
Hyiz) (All-zero System) Hyz) (All-pole System)

Derivation of Direct Form IT The transfer function Az} can be written as the product of the

two transfer functions ¢z} and H: (z) as follows where we have reversed the sequence of the
two blocks:

nl

r

¥(z) 1 u
Hiz) = o — [Zb :'*] = Hifz) Hxz)
X 1+Z.:a't:-'Ji =
k=l
\ v S ;Y_)
Hiz) Hoz)




Xiz) Piz) ¥iz)
o Hifz) > 2 H:iz) —*
M
Piz) = Hyfz) Xiz)= + Xiz) and  Tiz) = Hyz) Piz) = [ >.b :‘*]Pf:-,i'
1+ a,z™ k=0
-l

Cross-multiplying, taking the inverse z-transform of the above two and rearranging, we have
N M
pm)=x(n)— 3 a,p(n—k), and ym)= 2 b pn-r)
k=1 r=i

The two equations are realized as below:

) pn) by )
xim) ;\ pin) HMJ
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Hyz) (All-zero System)

Hyz) (All-pole System)
The two branches of delay elements in the middle of the above block diagram can be replaced by
just one branch containing either ¥ or M (whichever is larger) delay elements, resulfing in the
Direct Form IT shown below:

In the above diagram each column of adders on each side can be replaced by a single adder
resulting in the more familiar form shown below. There are now only two adders.



Direct Form IT
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The nmumber of delay elements = max {N, M} — this is the minimuom possible, hence called

@ canonic form. The multipliers are the actual coefficients from the difference equation. Hence
this is also a direct form.

The numbers of multipliers and adders are also the minimum possible, but this does not

mean that 1t is the best realization from other considerations like immunity to round off and
quantization errors.

The difference equations are:
pin)=xin)—a; p(n-I) —a; p(n-2) —... —ay p{n-N) ., and
yin)=bgpin) + by pin-1) + . + by pin-M)




The above equations show that in order to generate yin/) we need the present value of xi_)
and N (or M or whichever is larger) past values of p( ). This requires IV storage locations not
counting the present value of xfJ). We also see that the number of multiplications = N+M+1. and
number of additions = N=M.

Comparing the difference equations of Direct Forms I and IT:

* To compute y(n) in DF I we need the past NV outputs, the present input, and the
past M inputs.
* To compute yiu) in DF II we need the N (or Af) values of pin—k) for k=12, ..., N,
and the present input.
This illustrates the concept of the state of a svstem.

Problem:

Develop a canonic direct form realization of the transfer function
6z° +8z° —4
2z° +6z* +10z° + 8z

Solution Write numerator and denominator as polynomials in negative powers of = with the
leading term (@) in the denominator equal to 1

Hiz) =

Hie) = Z(6+827 —-4z7) _ (6+8z7 —4z7)
U Z(Q2+627 #1027 +827Y) (24627 +10z7 +82z7Y)
(6+8z7 —4z7) 3+4z7 =227

B 2{1+3£'1 +5z7" +4E4} B 1+3z7 +52° +4z~°

Malking the following comparison with the standard notation
b +bzt +b.2? +b 27 +b 27 +b,27° 3+4272 =227

Hiz)= = =

1+az" +a,z7 +a,z7 +a,:z 1+327 4527 =42~

we identify the following parameters:
bym3 bym0, bymd bym(, bym(, bym=2
ar=3. a:=5.a;=0 as=4




4 (b2)

p(n-3)

—4 (—ay) v

=2 (bs)

Problem:
A system is specified by its transfer function as
Hez) (z=-D{z-2)(z+1)z

A A AT

Realize the system in the following forms: (a) Direct Form I, and (b) Direct Form IL

Solution We need to express Hyz) as a ratio of polynomials in negative powers of 2 with the
leading term (a@g) in the denominator equal to 1. Multiplving out the factors in the numerator and
denominator and rearranging

(- -22) _ 1-2z7 -z 4227

1 - ]- 2 1_"—]+i7—:_i__—3+i"—1’
[: _L+E}[:_ +].ﬁ] = lﬁ_ ]_6_ 32‘

Hiz)=
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-1/32

Cascade realization of IIR filters Many different realizations exist depending on how we
choose to write and rearrange the given transfer function Two very important ways of
decomposing the transfer function are the cascade and parallel decompositions.

In the cascade realization Hz) 1s broken up into a product of transfer functions H;, A5,
..., Hg, each a rational expression in = as follows:

% = Hiz) = Hyz) Hp1(z) ... Ha(z) Hi(z)

so that Fyz) can be written as

Yiz)=Hyz) Hepiz) ... Haz) Hyz) Xiz)

Vi) Vain) Veafn) yin)
o  Hiz) ¥z - —  HdZ) >
Xz ¥iz)




Although Hiz) could be broken up in many different ways, the most common cascade
realization is to require each of the & product H's to be a biguadratic section. In many cases the
design procedure yields a product of biquadratic expressions so no further work 1s necessary to
put Hz) in the required form. The product terms HjZ) could take various forms. depending on
the actual problem. Some possible forms are

b b, +bz"
Hi)=——2—— .  Hf)=-—1
l+az” +a,z 1+ az" +a,z
_-1 _-1
Hiz)=bg+ b T+ b Hiz)= By + 42 +_?:'
l+a:z
_-1 -2
Hiz) = B+ .!:]__1 ha bz'_ﬁ (Biquadratic)
l+az +a,z
b +hbz™
Hiz)= 222 (Bilinear)
l1+a:z

Each of the Hyz) could then be realized using either the direct form [ or IT.

Different structures are obtained by changing the ordering of the sections and by
changing the pole-zero patrings. In practice due to the finite word-length effects, each such
cascade realization behaves differently from the others.

Problem:

Develop two different cascade canonic realizations of the following causal ITR
transfer function
Hiz) = zEﬂ_Ez —0.35)2z+3.1)
(27 +2.1z-3)=z+0.6T)
Solution Write in terms of negative powers of z
zz°(03-0527")2+3.1z7")  (03-05z"")2+3.1z7)

P+2127 =3z +06727)  (1+2.1z7 =3z7)1+0.6727)

Hizi=

Two (of several) different cascade arrangements, based on how the factors are paired, are shown
below in block diagram form. Note that the intermediate signal vy is different from the
intermediate signal ys(n).

Cascade — 4
x(n) 0.3-0.5z" yiin) 2+3.17° ya(n) = y(n)
— 5 = > - —
1+21z7 -3z 1+0.67z
Cascade — B
xifn) 243170 yfn) . 03-05:z71 Yl = ymj
1+2.1z71 -3 | 1+0.67:z7




Cascade 4 is shown below using the direct form IT for each block separately:

03
X N pafn) . SN Mam)
.KE " l b o ¥ _/,'—l-
Z_I
05
.1__.{ e
2.1
v
Z_I
3 p1(n-2)
2 - -
"Jr;fm iz‘\! p:f) J’ N :-‘f E‘\}:m) =y(n)
Z_I
j3_1

-0.67

Cascade B is shown below using the direct form II for each block separately:

x(n) ,/;\ psn) 2 ,f;\ ysfn)
— f > l > > —
71
3.1
EXe) ';
¥
Z—l
3 :| ps(n-2)
ysfn) 7N Ppsn) |U'3 ¢ Nyam) =)
L T} - L )
NG 1




A(z)B(z)
C(2)D(z)
sequence order of the blocks in the cascade we can have 4 different implementations (structures).
These are equivalent from input to output though not at the intermediate point between the
blocks. Moreover the quadratic (z° + 2.1z — 3) has real roots and so can be split into two factors
each of which can be combined with the other factor (z + 0.67) in the denominator. This results
in more than the 4 structures shown here.

Note in this example that if Hiz)= then depending on the pole-zero pairings and the

A(2) | B@) A=) B(z)
— 7 @) D(z) ’ | D2 €@

30 | | 4@ 3o | | A |
" i) "I D(z) D(z) C(z)

Parallel realization of IIR filters The transfer function H(z) is written as a sum of transfer
functions Hyz), Hxz), .... Hyz) obtained by partial fraction expansion:

¥iz

% =H(z) =Hifz) + Hyz) + ... + Hpi(z) + Hyz)

Yiz) = Hiz) Xiz) = [Hyz) + Hxz) + ... + Hpafz) + Hyz)] Xiz)
= Hifz) Xzh+ Hyz) Xiz)= ..+ Heaz) Xz)+ Hyz) Xiz)

Thus

and 1s shown in block diagram fashion below. Note that the outputs yyin), yainl, ... vefi) are
independent of each other; they are not coupled as in the case of the cascade structure.

Based on whether Hyz)/z or H(Z) is the starting point for partial fractions we have parallel
forms I and II (5. K. Mitra). Both of these methods are illustrated below.

Hifz)
H(z)
xin) . ,
—] : yin)
e | ¥e)
Hifz)
Hiz)




Problem:

Obtain the parallel realization for
82° — 4z +11z -2
(- -z+@/2)
Solution For the Parallel Form I we expand /yz)/z. Note that in the denominator the factor
{zz —z+(1/ 2}) represents a complex conjugate pair of poles at [(1 D/ 1}].

Hizi=

H(z) _ 82 -4z +11z-2  _ 4, B, €Cz+D
z z(z-(1/4)(2* —z+(U/2) z (z-(U/4) | -z+(1/2))
o8 4tvnz-2 | 2

=16

A= n - =
(z—/H)z* -z +{1.-"2}_H:_IJI (-1/4)(1/2)
8z —4z% +11z 2|
(2 —z+(1/2))
To determine C and D
8z° -4z +11z-2
z(z— U/ )[2* —z+(1/2))
_Az-U)z -z 2))+Bz(z* —z+(1/2))+(Cz+ D)z(z— (1/4))
z(z—QU/)z* —z+ /D))
Putting 4 = 16 and B = §. and equating the numerators on both sides
827 —4z° +11z-2
= 16(z—(U/H))N2* —z+(1/2) )+ 82(z* 2+ (1/2) }+ (Cz + D) z(z - (1/4))
Equating the coefficients of like powers of z on both sides we have
;. 8=16+8+C — C=-16
27 -2 =16 (-1/4) (1/2) which is an identity — doesn’t help
zt: 11=16(12)+16(-1/4) (-1)+8(1/2)+ D (-1/49) —D=20
Therefore we have
H(z) _16 8 N (-16)z+20
z z (z-@/4) ([ -z+/2))

Hiz)=16+

B=

= ==§

r=l/4

8z L z(20-162z)
(z-@/4) (2-z+@Q/2))

8 L —16+20:"

Hiz)=16+ - = —
1-025z 1-z7 +0.5z

=Hi(z) + Ha(z) + Hi(z)



The corresponding parallel form I diagram is shown below.

® T~ yin)

x(m)

e

0.3
Realization of FIR filters A causal FIR filter is characterized by its transfer function H(z) given
by
¥iz) g 1 o
——=HiEz)=) bz =by+biz + . +he
X(z2) Z;:-

or, by the corresponding difference equation
A
yin) =2 bx(n—r) = bpx(n) + by xfn-1) + brxm=2) ... + byxin-M)

Fom=i
Note that some use the notation below with M coefficients instead of M = 1

-1

yin) =2 bx(n—r) =bpx(n) + by x(n=I) + by x(n=2) . + bary x(n-M=1)

rmi}
We see that the output v} is a weighted sum of the present and past input values; it does not
depend on past output values such as yfn—1), etc. The block diagram is shown below. It is also
called a tapped delay line or a transversal filter.



M™ Delay

-1

x(n=M)

-1 -1

by

It can be seen that this is the same as the direct form I or II shown earlier for the ITR filter. except
that the coefficients a; through ay are zero and ap = 1; further the delay elements are arranged in
a horizontal line. As in earlier diagrammatic manipulation the multipliers can all feed into the
rightmost adder and the remaining adders removed.

Other simplifications are possible based on the symmetry of the coefficients {b,}, as we
shall see in FIR. filter design.

Cascade realization of FIR filters The simplest form occurs when the system function is

factored in terms of quadratic expressions in =7 as follows:
C K

}f?fj== I%[}?;{:} = I_[(E%?-Fzﬁlf_l +-&E|E_:}

rml jm]

Selecting the quadratic terms to correspond to the complex conjugate pairs of zeros of Hiz)
allows a realization in terms of real coefficients bg:. bir and by Each quadratic could then be
realized using the direct form (or alternative structures) as shown below.




DIGITAL SIGNAL PROCESSING UNIT

INTRODUCTION TO DFT:
Frequency analysis of discrete time signals is usually performed on digital signal

processor, which may be general purpose digital computer or specially designed digital
hardware. To perform frequency analysis on discrete time signal, we convert the time
domain sequence to an equivalent frequency domain representation. We know that such
representation is given by The Fourier transform X(e') of the sequence x(n). However,
X(e"™) is a continuous function of frequency and therefore, It is not a computationally
convenient representation of the sequence.DFT is a powerful computational tool for
performing frequency analysis of discrete time signals. The N-point DFT of discrete time
sequence x(n) is denoted by X(k) and is defined as

DFT[x(m]=X () = X xmWg* .+ k =0.1,2........(N-1)

n=0
woo
N— —
Where (N

e

IDFT of X(K) is given by

1 5= 0,1,20en N-1
IDFT[X (k)]= x(n) = 2 x (N-1)
N (W,
K=0

W. = ‘j” 21”
Where "V (x)
e

- Find the 4-point DFT of the sequence x(n) = cos ’34—“.

Solution Given N = 4,

x(n) = [cos (0), cos (n/4), cos (n/2), cos (3n/4)]
= {1, 0.707, 0, - 0.707)
The N-point DFT of the sequence x(n) is defined as

N-1
X(k)= Y x(n)e /2**MN p=0,1,. . .N-1.

n=0

The DFT is

3
X(k)= Y x(n)e/?*"* £=0,1,2,3
MALLA -



3
= Y x(n)e /=42 £=0,1,2,8
=0

For k=0

3
X0 = » x(n)=1
n =0

Fork=1

a
X(1)= % x(n)e Srln/2

=0

=1+0707e?™ 40+ (—0.70T)e~ 32
= 1 + (0.707) (—j) + 0 — (0.707) (j)
=1—j 1.414

Fork =2

X(2) = z x(n) e /™02 = z x(n) e” /™"
n==—oa n=—oea
=1+ (0.707) e7™ + 0 + (- 0.707) e/3"
=14+0.707 (-1 +0+ =070 (-1)=1
Fork=3

3
X@3) = Y x(n)e/*@n2

n=0
=1+ (0.707) e73*2 4 0 + (= 0.707) e7 V2

=1+0.707) ()N +0+(=0707) (=) =1+j1414
Xk)=1{1,1-j1.414,1,1 +j 1.414}

Find the N-Point DFT for x(n) = a" for 0 < a < 1.

Solution The N-point DFT is defined as

N-1
X(k)= ¥ x(n)e /2N p=0,1,.,N-1.

n=0

N-1 )
= z a™ g-Jﬂsnh’N
F'I.-°

- El {ae—_;zu.w ]"

n=10D

MALLA



1- (ae f2xWN }N

1-ae J2RNIN
1-a¥
X(k)= 1 ao-J2"WIN ,k=0,1,...,., N-1
Derive the DFT of the sample data sequence x(n) =

{1, 1, 2, 2, 3, 3} and compute the corresponding amplitude and phase
spectrum.
Solution The IN-point DFT of a finite duration sequence x(n) is
defined as
N-1
XM= ¥ x(n)e/252VWN pwp,l,...,N-1.
n=0
Fork =0

5 5
X0 =3 x(n)e /208 = % x(n)=1+1+2+2+3+3=12

] n =

Fork=1

X(1)= i x(n) e~ I2%(Dn/6
n=i
5
= Y x(n)e /™3
A=0
=1l+e /™ 42730127+ 8e74VP + 3753

1+ 0.5—j0.866 + 2(—0.5 —j 0.866) + 2(— 1)
+ 3(—0.5 +j 0.866) + 3(0.5 + j 0.866)
— 1.5+ 2.598

For &

Il
b

5 :
XDe: ¥ sn)eIAnAue
n=0

i x(n) e runts

ﬂ:ﬂ
1 +e I8 4 i | g%, g T8 4 g1
1+ (—0.5)—-,40.866 + 2(—-0.5 +j 0.866) + 2(1)
+3(—0.5 -j0.866) + 3(—0.5 + j0.866)

i n

=—1.5 +,0.866

For k=3
5
X@) = T x(n)e I2n@me
n=0
5 .
= Z x(in)e I®"
m=0

MALLA



=1l+e7*+2e¥%* 4+ 2e/3% 4 34" + 3e75*
=1-1+2(1)+2(-1)+3(1)+ 3(-1)=0

Fork=4

&

Z x{ﬂ] e—jﬂl{‘”ﬂf‘
n=0

5
= Y x(n)eT/iEeA

nw
1+e798 4 07088 | gpdix | g o182 , g o /20RA
1 + (= 0.5 +j 0.866) + 2(~0.5 —j 0.866) + 2(1)
+ 3 (- 0.5 +_,0.866) + 3(~0.5 —j 0.866)

X(4)

=-1.5-,0.866
Fork=56

X(5) = i x(n) ¢~ /3%BIn/6

5
z x(n) e~ 15%n/3

n=0

14275 . 01058 4 9470k o g JWNRR g gT/20aD

=1+ (—0.5 +j 0.866) + 2(—0.5 + j 0.866) + 2(— 1)
+ 3(— 0.5 —j5 0.866) + 3 (0.5 —j 0.866)
=-1.6-72.598
X(k)={12,-1.5 +,2.598, -1.5 +j0.866, 0, —1.5 —j 0.866,
—1.5 —j 2.598)
The corresponding amplitude spectrum is given by
| Xy | = {VIZx 12, V(- 15)* + (-2.598)%, J(- 15)* + (0.866)?, 0,
J=1.5? +(-0.866), J(-15)% + (- 2.598)% }
= {12, 2.999, 1.732, 0, 1.732, 2.999}
and the corresponding phase spectrum is given by

LX(k) = {tan“ (0), tan ! [% tan ! (%} tan~—! (0)

n (29208 -+ (22850}

= Gl-“Ef“EnolE:E
{ 3 6 6 3

MALLA



' Find the inverse DFT of X(k) = (1, 2, 3, 4).
Solution The inverse DFT is defined as

-1 )
x(n) = -1 IS_‘, X (k) e/2%nbN 5 =0,1,2,8,...,.N-1L
k=0

3 .
Given N =4, x(n)= 1 3 X(W)e/2*"*N n-0,12,3
k=0

When n=0

1 3
- 2 X(k FETIT T
x(0) 4 E (k) e

k=0
=%{1+2+3+4)=%
Whenn=1
1 < -
()= Y X(k)el/xV¥2
4 o
=i[1+2e1”2+3e1‘+4ef""2}
=%(1+2{j}+3{-1}+4(—-ﬁ]
1 . 1 ; 1
-_ —2— = oe—— = S
4( Jj2) 2 ..i’2
When n = 2
1 3
x(2)== Y Xk e'™*
4 iT0
= 2(1+2e/" +8e/3" + 4e /%)
=%;1+2{—1}+3{11+4:—1}1
- T -
= 4( 2 1/2
When n =3
: - ;
x(3)= < Y X (k) e’3W2
4 ;=0

=

i(1+22131m+3ejat+4£j9mf2}

MALLA



- %(1+2{—j)+3{—1‘1+41}

1 . 1 .1

== (-2+2j)=—=+j=

4 d 2773
5 1 .1 1 1. .1
*n)e e Jar 5 g iy

Properties of the DFT

The properties of the DFT are useful in the practical techniques for
processing signals. The various properties are given below.

Periodicity
If X(k) is an N-point DFT of x(n), then

x(n + N)=x(n) for all n
Xk + N)=X(k) for all &

Linearity

If X (k) and X,(%k) are the N-point DFTs of x,(n) and x,(n) respectively,
and a and b are arbitrary constants either real or complex-valued, then

ax y(n) + bxyn) «—LEL— aX (k) + b X y(k)

Time Reversal of a Sequence

If x(n) «—2EL_, x (k), then

N

x(—n,(mod N)) = x(N—n) % X (~k,(mod N)) = X(N — k)
Hence, when the N-point sequence in time is reversed, it is equivalent

to reversing the DFT values.

Circular Time Shift

If x(n) 27— X (&), then

x(n — I, (mod N)) %X{i}eqhum
Shifting of the sequence by [ units in the time-domain is equivalent to

multiplication of e /*™™ i the frequency-domain.
Circular Frequency Shift

If x(n) +—-‘f‘l-f~—¢ X (k), then

x(n)e 125N «LEL— X (k — 1, (mod NY)
Hence, when the se%uance x(n) is multiplied by the complex
exponential sequence e /*™"N it is equivalent to circular shift of the
DFT by { units in the frequency domain.

MALLA



Complex Conjugate Property
If x(n) «2EL X(k), then

x°(n) % X'~ k, (mod N)) = XN - k)

Circuwlar Convolution
If x,(n) <-F—I—’-:,L—r Xy(k) and xyn) 25T X ,(k), then

x,(n)QDxo(n) %xlm X (k)

where xﬂn)@x s(n) denotes the circular convolution of the sequence
xy(n) and x,(n) defined as

N-1
x4(n) = E:rl{m}xzin — m, (modN))

m=0

N-1
= Zxﬂtm}xi (n —m, (modIN))

Multiplication of Two Sequences

If x,(n}i%lxl{k} and xy(n) e—%:xzm}, then
x3(n) x5(m) LT — 2 X (YEDX, )

Parseval’s Theorem

For complex-valued sequences x(n) and y(n),

if x(n) «—LEL 5 x k) and y(n) «LEL— y(@&), then
N-=-1 . 1 N-=-1 =
> x(n)y (n) = — 3 X(RY (k)
n=0 N k=0

If ¥ (n) = x(n), then the above equation reduces to

N-=1 2 1 N =1
D lx(n)* = = 31 X(k)*

A= k=0

This expression relates the energy in the finite duration sequence
x(n) to the power in the frequency components X(k).

Methods of Circular Convolution:

Generally, there are two methods, which are adopted to perform circular convolution
and they are -
(1) Concentric circle method (2) Matrix
multiplication method.

MALLA



Concentric Circle Method:

Let xi(n) and xz(n) be two given sequences. The steps followed for circular convolution
of x1(n) and x»(n) are
e Take two concentric circles. Plot N samples of x;(n) on the circumference of the
outer circle (maintaining equal distance successive points) in anti-clockwise
direction.
e For plotting x;(n) ,plot N samples of x,(n) in clockwise direction on the inner
circle, starting sample placed at the same point as 0™ sample of xi(n)
e Multiply corresponding samples on the two circles and add them to get output.

¢ Rotate the inner circle anti-clockwise with one sample at a time.

Matrix Multiplication Method:

Matrix method represents the two given sequence Xx;(n) and Xxz(n) in matrix form.
e One of the given sequences is repeated via circular shift of one sample at a
time to form a N X N matrix.

e The other sequence is represented as column matrix.

The multiplication of two matrices gives the result of circular convolution

SECTIONED CONVOLUTION:
Suppose, the input sequence x(n) of long duration is to be processed with a system
having finite duration impulse response by convolving the two sequences. Since, the linear
filtering performed via DFT involves operation on a fixed size data block, the input
sequence is divided into different fixed size data block before processing. The
successive blocks are then processed one at a time and the results are combined to
produce the net result. As the convolution is performed by dividing the long input
sequence into different fixed size sections, it is called sectioned convolution. A long input
sequence is segmented to fixed size blocks, prior to FIR filter processing. Two
methods are used to evaluate the discrete convolution.

(1) Overlap-save method  (2) Overlap-

add method
Overlap Save Method:
Overlap-save is the traditional name for an efficient way to evaluate the discrete
convolution between a very long signal x(n) and a finite impulse response FIR filter
h(n).
1.Insert M - 1 zeros at the beginning of the input sequence x(n).
2. Break the padded input signal into overlapping blocks xn(n) of lengthN=L+M-1
where the overlap
length is M -1.
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3.Zero pad h(n) to be of length N=L + M - 1.

4. Take N-DFT of h(n) to give H(k), k =0, 1,2,
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5. For each block m:

Take N-DFT of xn(n) to give Xm(k), k=0, 1,2,... N-1.
5.2 Multiply: Ym(k) = Xm(k) . H(k), k=0, 1,2,..........ccuuuvee N -1
Take N-IDFT of Ym(k) to give ym(n) ,n =0, 1,2,..........ccvu. N-1.

Discard the first M - 1 points of each output block ym(n)
6. Form y(n) by appending the remaining (i.e., last) L samples of each block
Input signal blocks:

L L L
NM -]
Zeros
| | z1(n)
M — 1 p
5.::01111 | ry(n)
overlap
M1 =
point | x3ln)
Output zignal blocks: overlap
Ll wle ]
Discard P
M —1 ,l/ | yzin) |
pounts Discard —
A ] J/ | FRARLY)
points Dizcard
M =1
points

Overlap Add Method:
Given below are the steps to find out the discrete convolution using Overlap
method:
1. Break the input signal x(n) into non-overlapping blocks xn(n) of length L.
2.Zero pad h(n) to be of length N=L + M - 1.
3. Take N-DFT of h(n) to give H(k), k=0, 1,2,.......c..cevuuue N-1.
4. For each block m:
Zero pad Xm(n) to be of lengthN=L + M - 1.
Take N-DFT of xm(n)to give Xm(k), k=0, 1,2,......ccvuvurunne N
- 1. 4.3 Multiply: Ym(k) = Xm(K).H(k), k = 0, 1,2,

4.4 Take N-IDFT of Y (k) to give ym(n), n =0, 1,2,......ccecuuneee N -1.

5. Form y(n) by overlapping the last M - 1 samples of yn(n) with the first M -1
samples of ym.1(n) and adding the resulit.
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Input signal:

L L - L
r1(n) N M1
~ Z8ros
z2(n) N M-1
N Zeros |
_ r3(n) \
Output signal: ~ reros
y1(n)
Add /)
M- 1 y2(n) .
points Add
M-I ys(n)
points

FAST FOURIER TRANSFORM (FFT)

The fast Fourier transform (FFT) is an algorithm that efficiently
computes the discrete Fourier transform (DFT). The DFT of a sequence
[x(n)} of length N is given by a complex-valued sequence [(X(k)]

=1 .
X(k) = NZ x(n)e J2%nkiIN g p< N -1.

n=0
Let Wy, be the complex-valued phase factor, which is an N th root of
unity expressed by

Hence X (k) becomes

N -1
Xk)= 3 x(n)W2*, 0<k<N-1
n=0

Similarly, IDFT becomes

-1
dnyad S X (k) W5, 0snsN-1
N k=0

From the above equations, it is evident that for each value of k&, the
direct computation of X(k) involves N complex multiplications (4N real
multiplications) and N — 1 complex additions (4N — 2 real additions).
Hence, to compute all N values of DFT, N? complex multiplications and
N(N - 1) complex additions are required. The DFT and IDFT involve the
same type of computations.
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Decimation-in-Time (DIT) Algorithm

In this case, let us assume that x(n) represents a sequence of N values,
where IV is an integer power of 2, that is, N = 2L, The given sequence is

decimated (broken) into two % point sequences consisting of the even
numbered values of x(n) and the odd numbered values of x(n).

The N-point DFT of sequence x(n) is given by

N -1
Xk)= 3 x(n)Wi*, OsksN-1

=0
Breaking x () into its even and odd numbered values, we obtain

N-1 N-1
Xk)= Y xmWg*+ ¥ xm)wgp*

n=0,n even n =0, n odd
Substituting n = 2r for n even and n = 2r + 1 for n odd , we have

(N/2-D (NIZ- D)
Xky= Y x@rwWg™+ ¥ x(2r+ D WFTHLE
r=0 r=0

(N/2—-1) (IN/2)-1
= Y x@2rWH)*+W5 3 x(@2r+DWg)*
=0 raQ

Here, Wﬁ i [e‘*“"’”*]ﬂ = e H2RANZY _ Wiz

Therefore, Eq. can be written as
(N/2-1) (NI/IZ-D
Xky= F x@rWih,+Wy ¥ x(2r+D W),
r=0 r=0
k _ N
= G(k)+Wyn-H(E), k=0, 1,...?—1

where G (k) and H(k) are the N/2-point DFTs of the even and odd
numbered sequences respectively. Here, each of the sums is computed

forO<k < % ~ 1 since G(k) and H (k) are considersd periodic with period

N2,
Therefore,
G (k) + W H (), Dsks%—l
X(k) =
E) (k+ N/2) ﬂ) N -
G(k+ T )+ we H(k+ y) Zsksn-1
Using the symmetry property of Wy *"'2 = —W§,
G (k) + Wk H (k) Dsks%{-l

G(k+N/2)- Wk Hk+ N/2), EﬂksN—l
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Figure shows the flow graph of the decimation-in-time
decomposition of an 8-point (N = 8) DFT computation into two 4-point
DFT computations. Here the branches entering a node are added to
produce the node variable. If no coefficient is indicated, it means that
the branch transmittance is equal to one. For other branches, the
transmittance is an integer power of Wy,

Then X (0) is obtained by multiplying H(0) by W, and adding the
product to G (0). X (1) is obtained by multiplying H (1) by W,/ and adding
that result to G (1). For X (4), H (4) is multiplied by W} and the result is

added to G (4). But, since G (k) and H(k) are both periodic in & with
period 4, H(4) = H(0) and G(4) = G(0). Therefore, X(4) is obtained by
multiplying H(0) by W,/ and adding the result to G(0).

G(0)

x(0) * *\ » - X(0)
1 /V';

x(2)e— | n > b - X(1)
-5" Point G2) w.l

afd)ys— | DFT "1{21
G(3) wh

x(B)e > :X(B:

x(1) e——] . X(4)
H(0) 4
N

x(3) =——— X(5)
N point 1) ~
| N

x(7) .——| e b X(7)

Wwn

Fig. Flow Graph of the First Stage Decimation-In-Time
FFT Algorithm for N = 8

A(0) G(0)
= N i T 0
-~ Point \\ W;ﬁ/\ M
Al
x(4) 4DFT (1) 4 G(1) X(1)
N \/V
G(2) X(2)
. w

P Wi, S

—= X{(0)

Y

x(2)

{{' Paint
x{ﬁ} —— DFT

x(1)

2 Point Wi

x(5) DFT X(5)
Wi

x(3) N X(8)
74 Point 4

x(7) DFT [ » = X(7)
D(1) H(3) wi

Fig. Flow Graph of the Second Stage Decimation-in-time

FFT Algorithm for N = 8

MALLA



*(0) E . - X(0)
2 %\ y
1
A(1). ™ ( LMY

x(6)

=(1)

x(5)

=(3)

=(7)

x(4) * =; - : ‘
w Wi
e ﬂm\// x@)

x(2) »
X(3)
X(4)
X(5)
X(6)
Ll
> ¥ »- X7
Wz D) wi w,
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.
\\/ Ao
/ ". o

o X14)

—0 XI5)

o X8)

X7

Fig. Reduced Flow-Graph for an 8-Point DIT FFT

Example Given x(n) = {1, 2, 3, 4, 4, 3, 2, 1}, find X(&) using DIT
FFT algorithm.

_ 2= &
Solution We know that W,§ = e iw) . Given N = 8.

Hence, wo= e-'ﬂ:T}n =]



i
Wi=e i) = cos m/4 — j sin w/4 = 0.707 —j 0.707
= j[3%
W32=8 J':S}a

()3

= cos /2 — j sin /2 = —j

Wi=e = cos 3n/4 — j sin 3n/4 = — 0.707 — 5 0.707
Using DIT FFT algorithm, we can find X (&) from the given
sequence x(n) as shown in Fig.

Therefore, X (k)= ({20, —5.828 —j 2.414, 0, 0.172 —j 0.414, 0,
—0.172 +j 0.414, 0, — 5.828 + j 2.414)

x(0) =1 o X » — A o 3 — » _-;; < X[0) =20
- ” ‘
4) = 4 O—b—0F R, (Y ke ~/: o \\ L =
x(d)= = " o oy o S o T F0 X(1)==5.828- ;2414
we=1 ! . i i W
£(2) % 9 O Py et N L o o M2)e0
™ -ﬂ\_: - w= =1 //' \-\.'
x(B)=2 o » -.r"" v-:‘“-.': - 43"/ {9 © X{A)=0.172 - j0.414
War Wi o
5 / \
- e = P — 3 < 4)=0
x(1)=20 sy F/'_,D > T b‘/; : 4 e o Xi4)
< s e Y o \
x(5)=d op iy > N AR, .S X(5) = - 0.172 + jO.414
w:-T -1 b i ! ;
x(3)=a n_'_Q'.T—"‘ ?g—.—-@/—: 2 3 2 Se— —o X(6)=0
ps=— wi=t T N 1ejaWen :
x(T)m1 o-—.-'fd’f— h—:."g- — e — —o X(7) = - 5828 +/2.414
wi=t - Wi e - wi= -1
~0.707 - J0.707
Fig.
| Example | Given x(n) = {0, 1, 2, 38}, find X(k) using DIT FFT
algorithm.

Solution Given N =4
ngr - eﬁj{?ﬁ-]k
Wi=1and W}=e?*2=_j

Using DIT FFT algorithm, we can find X(k) from the given
sequence x(n) as shown in Fig.

Therefore, X(k) = {6, -2 + j2, -2, -2 — j 2}

2

x{0) =0 Cx o™ =y »> —— » > M0) = 8
ez O PG > 0 > —0 M) = 2442
%L

wien
xmy O o > > > X m-2
C)._y_d></ - /\
-2
x(3) =3 > ey » F > M) - 2 2

- -
Wis1 Wy ]

r -
A
X
1

{
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Decimation-in-Frequency (DIF) Algorithms
The decimation-in-time FFT algorithm decomposes the DFT by
sequentially splitting input samples x(n) in the time domain into sets of
smaller and smaller subsequences and then forms a weighted
combination of the DFTs of these subsequences. Another algorithm
called decimation-in-frequency FFT decomposes the DFT by recursively
splitting the sequence elements X (%) in the frequency domain into sets
of smaller and smaller subsequences. To derive the decimation-in-
frequency FFT algorithm for N, a power of 2, the input sequence x(n) is
divided into the first half and the last half of the points

> e X0

e M2}

e ey

e x6)

p——o 2N

-

——

™

Flow Graph of the First Stage of Decimation-In-Frequency FFT for N = 8
-,-/‘T'_ ‘Wp-—m].. - om0
pi1) 2 Pokd DFT l -

0, Jeeswoer |

Fig.

Fiow Graph of the Second Stoge of Decimation-In-Frequency FFT for N = 8

=0 X2)



x(0) o

x(1)c

x(2) o

x(3) o

x(5) o }{j(ﬂgv =

x(6)
x(7) o

Fig. Reduced Flow Graph of Final Stage DIF FFT for N = 8
Compute the DFTs of the sequence x(n) = cos ’;2—“,

where N = 4, using DIF FFT algorithm.
Solution Given N =4 and x(n)= (1,0, -1, 0}

2x
- (%)
Wei=e /(x)
Wf:l and “’}ze"’jtsz—j

Using DIF FFT algorithm, we can find X(k) from the given
sequence x(n) as shown in Fig.
Therefore, X (k) = {0, 2, 0, 2]

X[0) =1

x(0)=0

X(1)=0

I{E} =0

X(2)=-11¢ x(1)=2
X(3)=0 o x(3)=2
Givenx(n) = (1,2, 3, 4, 4, 3, 2, 1, find X(k) using DIF
FFT algorithm.

Solution Given N = 8.

_ 2=
We know that WJS =e iF *
Hence, Wg =1, Wg =0.707 - j 0.707
Wi =-j, W3 =-0.707 —j 0.707
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Using DIF FFT algorithm, we can find X(k) from the given
sequence x (n) as shown in Fig.
Hence, X(k) = (20, —5.828 - j 2.414, 0, -0.172 - j 0.414, 0,
—~0.172 + j 0.414, 0, —5.828 + j 2.414}

00 M0)=20

-v—-vf'jo 0 X2)=0
. 0‘/:\“'@”-: O XB)=0

w SR OO X1)=-5.828-[2414
-28285~ -~

LN PO X{5) - 0.1724j0.414

- Qi) N3 =~0.172 - 0414

ey O X[T)u-5.8284 244

INVERSE FFT:

An FFT algorithm can be used to compute the IDFT if the output is
divided by N and the “twiddle factors are negative powers of Wy, i.e.
powers of W' is used instead of powers of W),. Therefore, an IFFT flow
graph can be obtained from an FFT flow graph by replacing all the x(n)
by X(k), dividing the input data by IV, or dividing each stage by 2 when
N is a power of 2, and changing the exponents of W), to negative values.

SN AN A= S
- \\// oo w
X(3) o \ . /\ Wa >.<:j"3m

= x(0)

=5 %(B
5 Y s

X(4)o .”a*’ x(1)

X(5)© o x(5)

X(6) o jes x(3)
)

X(7) We vs x(7)

-1 =1 =1 1/8

Fig. Flow Graph of an IDFT Computation
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Use the 4-point inverse FFT and verify the DFT
results (6, -2 + j2, -2, -2 — j2] obtained in Example 6.18 for the given
input sequence {0, 1, 2, 3}.

—i(2%)a
Solution We know that W,f = e /() . Hence,
WPl=1and W/l=e™=;
Using IFFT algorithm, we can find the input sequence x (n) from the
given DFT sequence X (k) as shown in Fig.

4 )
X(0)=86 2 x(0)=0

X(1) = -2 +j20 -
1/4 )
x2) = -2 PO TR
X3) = -2 ~2 0 > x(3) =3
-1 -4 =1 12 1/4
Fig.

Hence, x(n)={0, 1, 2, 3}
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DIGITAL SIGNAL PROCESSING UNIT3

SELECTION OF THE FILTER TYPE

The selection of the digital filter type i.e., whether an [TR and FIR digital filter to be
employed ; depends on the nature of the problem and on the specification of the desired fre-
quency response. For example, FIR filters are used in filtering problems fhere there is a

requirement for a linear phase characteristic within the passband of the . When linear
phnuilnutlruquimt,dthumlmuﬂﬂﬂltﬂﬂnhluud.I-Imrmr most cases, the
nrdnrtﬂmjaflnﬂﬂfﬂhrumndﬁlﬂrhmhlrthuihlnrdutﬂ equivalent ITR
filter meeting the same magnitude specificationa. It has been lhnwn maost practical

filter specifications, the ratio Np/N,, is typically of order of ten or more As u ru'u.'ll:, IR
filter is usually computationally more efficient.

In this chapter we shall discuss techniques for designing ITR filters ¥rom the analog
filters, with the restriction that the filters be realizable and, of course, stable. There are four
diffarent methods which are available onder ITR filter design, these are,

1. Impulse invariance method

2. Bilinear transformation method

3. Matched z-transform technique

4. Approximation of derivatives.

We shall concentrate only the first two methods.

IIR Filter Design by Impulse Invariance
A technique for digitizing an analog filter is called impulse invariance tion.
The objective of this method is to develop an ITR filter transfer function whose ifnpulse response

is the sampled version of the impulse response of the analog filter. The main idea behind this
technique is to preserve the frequency response characteristics of the analog filter. In the
consequence of the result, the frequency response of the digital filter is an aliased version of
the frequency response of the corresponding analog filter,

To develop the necessary design formula for impulse invariance method, consider a
causal and stable “analog” transfer function H (s). Its impulse response h_(¢) is given by in-
verse Laplace transform of H (s), i.e.,

h(t) =L (H ()] «f 1)

In this method, we require that unit sample response hin) of the desired causal digital
transfer function H(z) be given by the sampled version of k_(¢) sampled at uniform interval of
T seconds.
ie,_ hin)=h (nT) n=0,1,2 0 2)
where T is the sampling period

To investigate the mapping of points between z-plane and s-plane implied by the sam-
pling process, the z-transform is related to the Laplace transform of A (t) as

H(z) [, v = Zlh(n)) = Z(h, (nT)) . 8)

=_|,_E_.H [I-I-J%] ol 4)

where, H(z) = z hn)z™" il B)
n=0

and H) |, r = 3, hlm)e™™ | ol 6)

A=0



where s=0+ ji}
Let us examine the transform z = 5T of eqn. ( 4) which can be written alternatively as,
z=eT
For s=0+j0Q
2 = = ofT = 0T = gHOT,
This then implies Q=eT
w =0T
where {1 is analog frequency and
w is frequency in digital domain.
9.2.1.1 Development of the transformation
To explore the effect of the impulse invariance design method on the characteristics of
resultant filter, let us consider the system function of the analog filter in the partial fraction

form. Assume that the poles of the analog filter are distinct i.e.,
N

H= Y -2 T

hu1 2P
where (A} are the co-efficients in the partial fraction expansion and

p, are the poles of the analog filter. The impulse response h_(¢) corresponding to
eqn. ( 7) has the form

N
h) =Y Awe™u,(®) sl
T |
where u_(t) is the continuous time step function.
If we sample h_(t) periodically at t = nT, we have

N
hin) = h (T = 3, Aye™Tu, (nT) el
k=1

8)

9)

Now, the system function Hi(z) of the digital filter is thez-transform ofithis sequence and

is defined by
Hiz) = z{h(n)).

He) = Y hn)z™ w{ 10)

Using eqn. (  10) the system function becomes

He)= Y, in.eh’“ =" o 11)

asd k=1

i i Z (ePT -1y LA 12)

kul ke
1

M
H{l‘]- z *‘HW o | 13}

k=1 1=

provided that |¢#7 | < 1, which is always satisfied if p, < 0, indicating that H_(s) is a stable

transfer function. From the eqn. ( 13) we observe that the digital filter haspoles at

z,=¢MT k=12 ....N



Comparing the uprulinn{_ 13)and ( 7), we see that the impulse invariance transfor-
mation is accomplished by the mapping.

1 1
s “ I—eTat LA 14)
1 - 1
8+ Py 1= ATt
2

Problem 1. For the analog transfer function H‘fl,‘ = m dbtermine the H(z)
using impulse invariance method.
2 2 2
coo H'm'(:+llh+2] s+l 842
Using the impulse invariance transformation of eqn. (  14), the digifal filter transfer
funetion

Hepe YD, 2 2 2¢ T(1-¢T)z"!
Xz) 1-eTz' 1-ePz1  (1-elz V) (1-e Tz
Problem 2. Convert the analog filter with system function
s+ 2
Hn) = (s+1e+3)
into the digital IIR filter by means of the impulse invariance method.
Sol. The partial-fraction expansion of H_(s) is given as
1 1

o o S VR R
B ) (s+1Xs+3) s+1+a+3

Using eqn. ( 14) the corresponding digital filter is then

1=z
tl EHE-I u—ﬂ+¢~TJ
2(-e Tz )(1-eT 2 D)
_1 2-2"%T(eT +e'T)
2(1-e" Tz N)(1-e7T 7))
1-z7'% T cosh T
He) = T - e 72
It should be noted that zero of H(z) atz =¢~?T cosh T is not obtained by transforming the
zero at § = — z into a zero atz = =T,

1 1 1
Hz) = E[W*'_-'H_l.'

Problem Apply the impulse invariant method to obtain the digital filter from the
second order analog filter

8+a

G L . S
As) (s +a)® +b*



Sol. The analog filter transfer function is

E+a
)= (s+a+ jb)(s+a- jb)
Inverse Laplace transforming,

—aml
h(e) = {u cos (bt), t20.

o, otherwisa,
Sampling this function produces
e T cos(bnT,), n20.
R S -

The z-transform of h(nT),), is equal to

HGez) = D, e cos(b,T,)z™"

Aa=0

H(z) = E [e™* cos (bT,) 71"
n=b
1-¢7 cos (bT,)z}
_e-hi-jﬁ. z-:l.]{l*c-ld-ﬁﬁ'. :-1]'

H(z) = a

Problem Using impulse invariance method with T = 1 sec deterrhine

; 1
B B = 5 sy
Sol. Given that
1

M=

1
h(e) = L (H(s)) = L [.n l

+J2s+1

CERE

1
=L1|J2. *—{i -
(%) (&)
=217 :'fi T,
3) (@



Let. t=nT
h(aT) = V2 "™ gin nTIZ |
If T =1 sec.
hin) = J2 ™2 gin n/y/2.

Hiz) = z[hin)] = -\ﬁl:

E'”“Ez 1 gin W2
1- Zt'”"&z”l cos W2 + e"ﬁz'z
0.453z7!
1-0.7497z"! + 0.2432:7%°

IIR FILTER DESIGN BY THE BILINEAR
TRANSFORMATION

The IIR filter design using (i) approximation of derivatives method and
(ii) the impulse invariant method are appropriate for the design of low-
pass filters and bandpass filters whose resonant frequencies are low.
These techniques are not suitable for high-pass or band-reject filters.
This limitation is overcome in the mapping technique called the
bilinear transformation. This transformation is a one-to-one

mapping from the s-domain to the z-domain. That is, the bilinear
transformation is a conformal mapping that transforms thej Q2-axis into

the unit circle in the z-plane only once, thus avoiding aliasing of
frequency components. Also, the transformation of a stable analog filter-

results in a stable digital filter as all the poles in the left half of the
s-plane are mapped onto points inside the unit circle of the z-domain.
The bilinear transformation is obtained by using the trapezoidal
formula for numerical integration. Let the system function of the analog
filter be

b
s+a

The differential equation describing the analog filter can be obtained
from Eq. 2 as shown below.

Y (s) b
2l X(s) s+a
sY(s) + a¥(s) = bX(s)

Taking inverse Laplace transform,

dy(® +ay(t)=bx(t) (3)

de

H(s)=

(2)




Eq. 3 is integrated between the limits (nT - T) and nT

nT

[ g, aj yt)dt=b jxmd: 4
nt-7 4t nT-T nT-T
The trapezoidal rule for numeric integration is given by
nT
Ia(ﬂdt=-—- la(nT)+a(T -T) 5
nT-T
ApplyingEq. > inEq.?  weget

y(nT)-y(nT-T)+ %y(n&"ﬂ%y(n?‘—ﬂ =% x(nT)+ % x(nT-T)

Taking z-transform, the system function of the digital filter is,

Y(2) b
H(z) = - O
) X( 2(1-2" ra
T\ 14271
Comparing Eqs. 2 and © we get,
2(1-2"" _2(2-'-1) .
5= — e | ——
T\1+2z') T\lz+1

The general characteristic of the mapping z = ¢*7 can be obtained by
substituting s = o + j Q and expressing the complex variable z in the
polar form as z = re’* in Eq.7

2 g_[z—l]=_2_ re’® -1
T\z+1) T\re/ +1

2
T

rd -1 i3 2rsin ]
1+r2 +2rcos® 1+r? +2rcos o
Therefore,

N S

( =] ) 8
1+r2 +2rcos ®
[ 2rsin ® ) 0
1+r% +2rcos®



From Eq. 8 , it can be noted that if r < 1, then 6 < 0, and if r > 1,
then ¢ > 0. Thus, the left-half of the s-plane maps onto the points inside
the unit circle in the z-plane and the transformation results in a stable
digital system. Consider Eq. o for unity magnitude (r = 1), o is zero.
In this case,

2 sin
o nf S06
T[1+¢usm)
E( 2sin /2 cos w/2 _]
T \ cos? @/2 + sin? w/2 + cos® /2 - sin? ®/2

tan £ 10

2
Q==
T 2

or equivalently,

1 QT

o= 2tan 11

Equation 5 gives the relationship between the frequencies in the
two domains and this is shown in Fig. It can be noted that the entire
range in £ is mapped only once into the range — n < w < n . However, as
seen in Fig. |, the mapping is non-linear and the lower frequencies in
analog domain are expanded in the digital domain, whereas the higher
frequencies are compressed. This is due to the non-linearity of the arc
tangent function and usually called as frequency warping.

The warping effect can be eliminated by prewarping the analog filter. The
effect of non-linear compression at high frequencies can be
compensated by prewarping. When the desired magnitude response is
piece-wise constant over frequency, this compression can be compensated
by introducing a suitable prescaling or prewarping the critical
frequencies by using the formula,

Q={21tan(wi









Relationship Between w and £ as Given in Eq. 11
Problem Convert the analog filter with system function.

s+0.1 . i iy )
H (s)= YT YT into a digital IIR filter by means of bilinear trafsformation. Reso-

nant frequency of a digital filter is given as w, = %
Sol. (i) We first note that the analog filter H_(s) has a resonant frequency.

ﬂ':lJl_ﬁ=4_

Fig.

(ii) Let us find T nt?
2

(iii) Now map S=5 [1_” ] [1_” )

By substituting values of s into H(s),
H(z) = H,(s) L_ [ ]

. ]+ﬂﬂl
2"

d
Hiz) =
4 ﬁl 2 _l+001| +16
14z



0.128 + 0.006z™" -0.122:""  0.128 +0.006z™" - 0.122:""
= 71400006z +0975z 2 14097522
(z+D(z-095)
“ (2-0987e %) (z - 0.987¢/)
This filter has a pole P, , = 0.98 z¢*/*? and zeros atz, , = - 1, 0.95.
Problem A first order Butterworth low pass transfer function with a 3dB cut off
frequency at §Q_ is given by

H_{u-—uf—.
s+0,
Design a single pole low pass with 3dB bandwidth of 0.2 n using the bilinear transfor-
mation,

2 we
Sol. ﬂ‘-$hﬂ?.
Given that w=02x
2 02x 2 0.65
ﬂ'TtllI 2 Ttlnﬂ.ll- T
The analog filter has a system function,
__0, _ 065T
H.[’} .+n: .+‘n._.ﬁ§
T
0.65T
an nH _..'I- -
H(z) _ml__%[#] 2(1-s7), 08
T\1+27 T
-1 -1
HE) 065(1+2) _0245(1+2z27)

“2-2:74065 (1-0509z7)
The frequency response of the digital filter is
0.245(1+¢™*)
o) = o509 ™ °
Thus atw=0, HO)=landatw=0.2 x,
| H(0.2 w) | = 0.707, which is a desired response.

'J

(s+1)(s® +s+1)

Problem Obtain H(z) from H (s) when T = 1 sec and H (s) =
s°

s+ s’ +5+1)°

Sol. Given that, H (s) =

21=-2"
Put &= 1 in H, (s)to get HGz).

&)




- 8(1-z7')°
[2 (1-27)+ T+ :"]][I{l-t")’ +2T(1- 27 X142 ™) T2 14277

But T = 1 sec.
8(1-z71)*

) = S ) 7—6z ' +329)
-1 _ 148

Hiz) = 267(= o

(z*-2:"+2330:7"-3)
Problem Design a digital Butierworth filter satisfying the constraints

0.7075 | He™) | s 1 fnrﬂ::wi;

Ix
| He™) | $02 for “F<osx.

with T = 1 sec using  The bilinear transformation

Sol. Bilinear transformation

, ! . R
Given that mtﬂ.‘i’ﬂ?, m-ﬂ.2,m,-2.u,- n

The analog frequency ratio is
2 w 3n
g, . x%y =3
o =a m,-musﬂiu
r = -t —
TR 4
The order of the filter,
N2 logNe
ke
From the givendata A = 4898, e=1,
log 46898
So, Nz log 2414 = 1.B03.
Rounding N to nearest higher value we get N = 2.
Q
- = = L =1
We know Q EHEH‘ Q, (- e=1)
2 w n
= — —£= _ =
Tt!n 2 Etln4 2 rad/sec.

The transfer function of second order normalizsed Butterworth hiter is
His) = - :
s’ +3§;+1
H_(s) for £)_ = 2 rad/sec can be obtained by substituting
& — &/2in H(s)



1 4
(s2)* +J2(s/2)+1 s* +2828s+4°
By using bilinear transformation H(z) can be obtained as
H(z)=H(s) |, g[h_-;]

Tl 1ex
s 1-x7"
1e2}

41+z71?

ie, H (s) =

4

Th S TISITY. . SSRIS
- T s +2828s5+4

T A1-2z7)7 +2828(1-z ) + 41+ 2 V)
_ 02929(1+271)
1+01716z72

* T=1sec)



